Math 2210 Quiz 7 (Sections 12.6-12.7)

\qquad
Summer, 2012
Dylan Zwick

Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (15 points) Find $\frac{\partial w}{\partial t}$ using the chain rule for $w=e^{x y+z}$ given $x=s+t$, $y=s-t$, and $z=t^{2}$. Express your answer in terms of s and t.

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t} \\
& \frac{\partial w}{\partial x}=y e^{x y t z} \quad \frac{\partial w}{\partial y}=x e^{x y+z} \quad \frac{\partial w}{\partial z}=e^{x y+z} \\
& \frac{\partial x}{\partial t}=1 \quad \frac{\partial y}{\partial t}=-1 \quad \frac{\partial z}{\partial t}=2 t
\end{aligned}
$$

$$
\Rightarrow \frac{\partial w}{\partial t}=y e^{x y+z}-x e^{x y+z}+2 t e^{x y+z}
$$

$$
=(y-x+2 t) e^{x y+z}
$$

$$
y-x=(s-t)-(s+t)=-2 t
$$

$$
\Rightarrow=(-2 t+2 t) e^{x y+z}=0 e^{x y+z}=0
$$

2. (10 points) Find $\frac{d w}{d t}$ using the chain rule for $\ln \frac{x}{y}$ given $x=\tan t$, and
3. (15 points) Find a point on the surface $z=2 x^{2}+3 y^{2}$ where the tangent plane is parallel to the plane $8 x-3 y-z=0$.

$$
\begin{aligned}
& 2 x^{2}+3 y^{2}-z=0=f(x, y, z) \\
& \nabla f=\langle 4 x, 6 y,-1\rangle=k\langle 8,-3,-1\rangle \\
& k=1 \quad x=2 \quad y=-\frac{1}{2} \\
& z=2\left(2^{2}\right)+3\left(-\frac{1}{2}\right)^{2}=8+\frac{3}{4}=\frac{32}{4}+\frac{3}{4}=\frac{35}{4}
\end{aligned}
$$

Answer: \qquad

$$
\left(2,-\frac{1}{2}, \frac{35}{4}\right)
$$

$$
\begin{aligned}
& y=\sec ^{2} t \text {. Express your answer in terms of } t \text {. } \\
& \frac{d \omega}{d t}=\frac{\partial \omega}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t} \\
& \frac{\partial w}{\partial x}=\frac{\frac{1}{y}}{\frac{y}{y}}=\frac{1}{x} \\
& =\frac{1}{x} \sec ^{2} t-\frac{1}{y} 2 \sec t \tan t \\
& \frac{\partial u}{\partial y}=\frac{-\frac{x}{y^{2}}}{\frac{x}{y}}=-\frac{1}{y} \\
& \frac{d x}{d t}=\sec ^{2} t \frac{d y}{d t}=2 \sec t \tan t \\
& =\frac{\sec t}{\sin t}-2 \tan t \quad \frac{\sec t}{\sin t}-2 \tan t
\end{aligned}
$$

