Math 2210 Quiz 6 (Sections 12.3-12.5)

\qquad Date $7-17-2012$

Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (15 points) Find the limit of $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$ or state and explain why it does not exist.

$$
\begin{aligned}
& \begin{array}{ll}
x=r \cos \theta & \lim _{r \rightarrow 0} \frac{r^{2} \cos \theta \sin \theta}{r}
\end{array} \\
& =\lim _{r \rightarrow 0} r \cos \theta \sin \theta \\
& \lim _{r \rightarrow 0} \leq r \leq \lim _{r \rightarrow 0} r \cos \theta \sin \theta \leq \lim _{r \rightarrow 0} r \\
& \Rightarrow 0 \leq \lim _{r \rightarrow 0} r \cos \theta \sin \theta \leq 0 \\
& \Rightarrow \quad \lim _{r \rightarrow 0} r \cos \theta \sin \theta=0
\end{aligned}
$$

Answer : \qquad
2. (10 points) Find the equation of the tangent plane of $f(x, y)=x^{3} y+3 x y^{2}$ at the point at $p=(2,-2)$?

$$
\begin{aligned}
f(2,-2) & =2^{3}(-2)+3(2)(-2)^{2}=8 \\
\nabla f & =\left\langle 3 x^{2} y+3 y^{2}, x^{3}+6 x y\right\rangle \\
\nabla f(2,-2) & =\left\langle 3(2)^{2}(-2)+3(-2)^{2}, 2^{3}+6(2)(-2)\right\rangle \\
& =\langle-12,-16\rangle \\
T(\vec{p})=z & =8+(-12,-16\rangle \cdot\langle x-2, y-(-2)\rangle \\
& =8-12 x+24-16 y-32 \\
z= & -12 x-16 y \Rightarrow 12 x+16 y+z=0
\end{aligned}
$$

3. (15 points) Find ∇f given $f(x, y)=x^{2}-3 x y+2 y^{2}$. Use this to find the directional derivative of f at the point $(-1,2)$ in the direction of the vector $2 \boldsymbol{i}-\boldsymbol{j}$.

$$
\begin{aligned}
& \nabla f=\langle 2 x-3 y, 4 y-3 x\rangle \\
& \nabla f(-1,2)=\langle-8, \mid\rangle\langle-8,11\rangle \\
& \vec{a}=2 \hat{i}-j \\
& \hat{a}=\frac{\vec{a}}{\|\vec{a}\|}=\frac{\langle 2,-1\rangle}{\sqrt{5}}=\left\langle\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right\rangle \\
& \begin{aligned}
D_{\hat{a}} f(-1,2) & =\langle-8,11\rangle \cdot\left\langle\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right\rangle \\
& =-\frac{16}{\sqrt{5}}-\frac{11}{\sqrt{5}}=-\frac{27}{\sqrt{5}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla f: \quad\langle 2 x-3 y, 4 y-3 x\rangle \\
& \text { Directional Derivative : } \quad-\frac{27}{\sqrt{5}}
\end{aligned}
$$

