

Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (15 points) Determine whether $\boldsymbol{F}(x, y)=\left(e^{x} \sin y+1\right) \boldsymbol{i}+\left(e^{x} \cos y+6\right) \boldsymbol{j}$ is conservative. If so, find a function f such that $\boldsymbol{F}=\nabla f$. If not, state that \boldsymbol{F} is not conservative.

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=e^{x} \cos y \quad \frac{\partial N}{\partial x}=e^{x} \cos y \\
& \text { So, } \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \text { so } \vec{F} \text { is conservative. } \\
& \frac{\partial f}{\partial x}=e^{x} \sin y+1 \Rightarrow f(x, y)=e^{x} \sin y+x+(y) \\
& \frac{\partial f}{\partial y}=e^{x} \cos y+C^{\prime}(y)=e^{x} \cos y+6 \\
& \Rightarrow C^{\prime}(y)=6 \Rightarrow((y)=6 y+C . \\
& \text { So, } f=e^{x} \sin y+x+6 y+C
\end{aligned}
$$

False (circle one)
4. If conservative, $f=\frac{e^{x} \sin y+x+6 y+C}{\text { (Any choice of C is also acceptable.) }}$
2. (15 points) For the vector field given above,

$$
\boldsymbol{F}(x, y)=\left(e^{x} \sin y+1\right) \boldsymbol{i}+\left(e^{x} \cos y+6\right) \boldsymbol{j}
$$

calculate the line integral $\int_{C} \boldsymbol{F} \cdot \boldsymbol{d} \boldsymbol{r}$ from $(0,0)$ to $\left(2, \frac{\pi}{6}\right)$ using any method you wish.

$$
\begin{aligned}
& \int_{(0,0)}^{(2, \pi / 6)} \vec{F} \cdot d \vec{r}=f\left(2, \frac{\pi}{6}\right)-f(0,0) \\
& \quad=e^{2} \sin \left(\frac{\pi}{6}\right)+2+6\left(\frac{\pi}{6}\right)-0 \\
& \quad=\frac{e^{2}}{2}+2+\pi
\end{aligned}
$$

$$
\text { Answer } \frac{e^{2}}{2}+2+\pi
$$

3. (10 points) What.... is your favorite color?

$$
\text { Answer: } \frac{\text { Yellow }}{\begin{array}{c}
\text { (Answers will, of } \\
\text { Course, vary.) }
\end{array}}
$$

