\qquad Key Date 7-26-2012
Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (20 points) Calculate the surface area of the part of the surface $z=\sqrt{4-y^{2}}$ in the first octant that is directly above the circle $x^{2}+y^{2}=4$ in the $x y$-plane.

$$
\begin{aligned}
z & =\sqrt{4-y^{2}} \quad \frac{\partial z}{\partial x}=0 \quad \frac{\partial z}{\partial y}=-\frac{y}{\sqrt{4-y^{2}}} \\
S A & =\iint_{R} \sqrt{1+0^{2}+\left(-\frac{y}{\sqrt{4-y^{2}}}\right)^{2}} d A=\iint_{R} \sqrt{1+\frac{y^{2}}{4-y^{2}}} d A \\
& =\iint_{R} \frac{2}{\sqrt{4-y^{2}}} d A
\end{aligned}
$$

2 Ways:

$$
\begin{aligned}
& \text { (artesian } \\
& =\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \frac{2}{\sqrt{4-y^{2}}} d x d y \quad \int_{0}^{\pi / 2} \int_{0}^{2} \frac{\text { Polar }}{\sqrt{4-r^{2} \sin ^{2} \theta}} d r d \theta \\
& =\int_{0}^{2} \frac{2 \sqrt{4-y^{2}}}{\sqrt{4-y^{2}}} d y \quad \begin{array}{l}
u=4-r^{2} \sin ^{2} \theta \\
d u=-2 r \sin ^{2} \theta d r
\end{array} \\
& =\int_{0}^{2} 2 d y=\left.2 y\right|_{0} ^{2}-\int_{0}^{\pi / 2} \int_{4}^{4\left(1-\sin ^{2} \theta\right)} \frac{d u}{\sin ^{2} \theta \sqrt{u}} d \theta \\
& =4 \\
& =\int_{0}^{\pi / 2} \int_{4}^{4} \frac{d u}{\cos ^{2} \theta} \frac{d \sin ^{2} \theta \sqrt{u}}{4} d \theta=2 \int_{0}^{\pi / 2} \frac{2-2 \cos \theta}{\sin ^{2} \theta} d \theta \\
& =4 \int_{0}^{\pi / 2} \frac{1-\cos \theta}{1-\cos ^{2} \theta} d \theta=4 \int_{0}^{\pi / 2} \frac{1}{1+\cos \theta} d \theta \\
& =\left.4 \tan \left(\frac{\theta}{2}\right)\right|_{0} ^{\pi / 2}=4 \tan \left(\frac{\pi}{4}\right)-4 \tan (0) \\
& =4
\end{aligned}
$$

\qquad
2. (10 points) Evaluate the iterated integral $\int_{0}^{2} \int_{1}^{2} \int_{0}^{\sqrt{x / z}} 2 x y z d y d x d z$.

$$
\begin{aligned}
& \left.\int_{0}^{2} \int_{1}^{z} x y^{2} z\right|_{0} ^{\sqrt{x / z}} d x d z=\int_{0}^{2} \int_{1}^{z} x^{2} d x d z \\
& =\left.\int_{0}^{2} \frac{x^{3}}{3}\right|_{1} ^{z} d z=\int_{0}^{2}\left(\frac{z^{3}}{3}-\frac{1}{3}\right) d z \\
& =\frac{z^{4}}{12}-\left.\frac{z^{2}}{3}\right|_{0} ^{2}=\frac{16}{12}-\frac{2}{3}=\frac{4}{3}-\frac{2}{3}
\end{aligned}
$$

Answer:

3. (10 points) Calculate $\iint_{S} e^{x^{2}+y^{2}} d A$, where S is the region enclosed by $x^{2}+y^{2}=4$.

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{2} e^{r^{2}} r d r d \theta \quad \begin{aligned}
u & =r^{2} \\
d u & =2 r d r
\end{aligned} \\
& =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{4} e^{u} d u d \theta=\left.\frac{1}{2} \int_{0}^{2 \pi} e^{u}\right|_{0} ^{4} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(e^{4}-1\right) d \theta=\frac{2 \pi}{2}\left(e^{4}-1\right) \\
& =\pi\left(e^{4}-1\right)
\end{aligned}
$$

Answer : $\pi\left(e^{4}-1\right)$

