Math	2210	Midterm	2

Summer, 2012

Dylan Zwick

Name _____ Date ____

<u>Instructions</u>: Please show all of your work as partial credit will be given where appropriate, **and** there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (20 pts) Find the directional derivative of $f(x,y)=x^2-3xy+2y^2$ at p=(-1,2) in the direction of a=2i-j.

Answer:

2.	(25 pts) For the sur tangent plane at th	face $x^3y^2 - yz^2 + z^2$ se point (1,1,1).	$x^2 y^3 z - 5 x + 2 = 7$	find the equation of the

Tangent Plane: _____

3. (8 pts) Draw the set $S = \{(x, y) | x \in (-2,2) \ y \in [-3,3] \}$.

(5 points) Is the set open, closed, or neither?

(3 points) Is the point (0,-3) an interior point?

(3 points) Is the point (2,-3) an interior point?

(3 points) Is the point (0,-3) a boundary point?

(3 points) Is the point (2,-3) a boundary point?

4.	(20 pts) Find each point is	all critical <u>points</u> a minimum, max	for $f(x,y) = x$ imum or saddl	$x^3 + y^3 - 6xy$. e point.	Determine whether
Cr	itical point(s)	(Specify whether	r they're min, r	max or saddle):

5. For $z=f(x,y)=x^2+y^2+e^{x+y}$, find (a) (10 pts) $\frac{\partial z}{\partial y}$ at (1, 1)

Answer :

(b) (10 pts) f_{xy}

6. (20 points) Find the minimum of $x^2+4xy+y$ subject to the constraint x-y-6=0 .

Answer:

7.	. (25 points) Find the dimensions of the rectangular box of volume which the sum of the edge lengths is least.	V_0	for
	Answer :		

8. (20 pts) Find $\frac{dw}{dt}$ if $w(x,y)=x^2y^3$, $x=t^3$, $y=t^2$. (Your answer must be only in terms of t.)

Answer : ______

9. Find the limit, if it exists. (Show all your reasoning.) (a)
$$\lim_{(x,y)\to(1,1)} \frac{x-3x^{\mathbb{I}}+3xy^{\mathbb{I}}-y^{\mathbb{I}}}{y-2x^2}$$
 (10 pts)

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\tan(x^{\mathbb{I}}+y^{\mathbb{I}})}{\sqrt{x^{\mathbb{I}}+y^{\mathbb{I}}}}$$
 (15 pts)

Answer : _____