Math2210 Midterm 1	Summer, 2012
--------------------	--------------

Dylan Zwick

Name _____ Date _____

<u>Instructions</u>: Please show all of your work as partial credit will be given where appropriate, **and** there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. For $x=2\sqrt{t-2}$ and $y=3\sqrt{4-t}$ such that $2 \le t \le 4$, do the following:

(a) (10 pts) Eliminate the parameter to obtain the corresponding Cartesian equation.

Answer 1(a):_____

(b) (10 pts) Graph the curve.

1	

(c) (5 pts) Indicate if the curve is simple and/or closed.

Simple:	Т	or	F	(circle one)
Closed:	Т	or	F	(circle one)

2. (10 pts) Find the length of the curve given by $x=4\sqrt{t}$ and $y=t^2+\frac{1}{2t}$ for $\frac{1}{4} \le t \le 1$.

4. (10 pts) Find the limit, if it exists.

 $\lim_{t \to 0^{*i}} \left[\ln(t^3) \mathbf{i} + t^2 \ln(t) \mathbf{j} + t \mathbf{k} \right]$

Answer (4) : _____

5. (10 pts) Find the equation of the sphere that has the line segment joining (3, 1, 7) and (7, 5, 5) as a diameter.

Radius = _____

center = _____

Eqn of sphere: _____

6. (10 pts each) Let $a = \langle 4, 1, 2 \rangle$, $b = \langle 2, 4, 1 \rangle$ and c = 6i + 3j. Find each of the following. (a) 2a - 3c

(b) $\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})$

2a - 3c =_____

(c) $\boldsymbol{b} \cdot \boldsymbol{c} - |\boldsymbol{b}|$

 $\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c}) =$

(Note: This is # 6 continued $a = \langle 4, 1, 2 \rangle$, $b = \langle 2, 4, 1 \rangle$ and c = 6i + 3j(d) \hat{c} (the unit vector)

(e) $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c})$

$$a \times (b \times c) =$$

(f) $\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})$

$$\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) =$$

ĉ = _____

7. (10 pts each) For a=3i+4j+5k and b=2i+j+3k, find each of the following: (a) Direction sections for a

(a) Direction cosines for a .

 $\cos \alpha =$

 $\cos\beta =$

 $\cos \gamma =$

(b) The angle θ between a and b. (Just write a simplified expression. If you don't have a calculator just write the numerical formula for the angle.)

 $\theta = \underline{\qquad}$ (c) Find the projection of **b** onto **a**.

Projection of **b** onto a = _____

8. (10 pts each) For the planes given by 3x - 2y + 5z = 16and 4x + 2y + z = 13, answer the following questions.

(a) Find the line of intersection between the planes and write that line in parametric equations.

Line: _____

(b) Find the equation of the plane that is perpendicular to the line of intersection and goes through the point (1, 3, 2).

Equation of plane: _____

9. (a) (10 pts) Convert $x^2 + y^2 = 2y + 2x$ from a Cartesian coordinate equation into an equation in cylindrical coordinates.

(b) (10 pts) Convert $r=2\sin\theta$ from a cylindrical coordinate equation into an equation in Cartesian coordinates.

Answer : _____