Name \qquad Date \qquad
Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. For $x=2 \sqrt{t-2}$ and $y=3 \sqrt{4-t}$ such that $2 \leq t \leq 4$, do the following:
(a) (10 pts) Eliminate the parameter to obtain the corresponding Cartesian equation.

Answer 1(a):
(b) (10 pts) Graph the curve.

(c) (5 pts) Indicate if the curve is simple and/or closed.

Simple: T or F (circle one)
Closed: T or F (circle one)
2. (10 pts) Find the length of the curve given by $x=4 \sqrt{t}$ and $y=t^{2}+\frac{1}{2 t}$ for $\frac{1}{4} \leq t \leq 1$.

Answer 2:
3. (15 pts) For position vector given by $\boldsymbol{r}(t)=\sin \overline{2 t \boldsymbol{i}+\cos 3 t \boldsymbol{j}+\cos 4 \mathrm{t} \boldsymbol{k} \text {, find the }}$ velocity and acceleration vectors and the speed at $t=\frac{\pi}{4}$.

$$
\begin{aligned}
& \boldsymbol{v}(t)= \\
& \boldsymbol{a}(t)= \\
& \text { speed at } t=\frac{\pi}{4}= \\
&
\end{aligned}
$$

4. (10 pts) Find the limit, if it exists. $\quad \lim _{t \rightarrow 0^{+t}}\left[\ln \left(t^{3}\right) \mathbf{i}+t^{2} \ln (t) \boldsymbol{j}+t \boldsymbol{k}\right]$

Answer (4) : \qquad
5. (10 pts) Find the equation of the sphere that has the line segment joining $(3,1,7)$ and $(7,5,5)$ as a diameter.

Radius $=$ \qquad
center = \qquad

Eqn of sphere: \qquad
6. (10 pts each) Let $\boldsymbol{a}=\langle 4,1,2\rangle, \boldsymbol{b}=\langle 2,4,1\rangle$ and $\boldsymbol{c}=6 \mathbf{i}+3 \boldsymbol{j}$. Find each of the following.
(a) $2 \boldsymbol{a}-3 \boldsymbol{c}$
(b) $\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})$
$2 a-3 c=$ \qquad
$\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})=$
(c) $\boldsymbol{b} \cdot \boldsymbol{c}-|\boldsymbol{b}|$
$\boldsymbol{b} \cdot \boldsymbol{c}-|\boldsymbol{b}|=$ \qquad
(Note: This is \# 6 continued $\boldsymbol{a}=\langle 4,1,2\rangle, \boldsymbol{b}=\langle 2,4,1\rangle$ and $\boldsymbol{c}=6 \mathbf{i}+3 \boldsymbol{j}$
(d) $\hat{\boldsymbol{C}}$ (the unit vector)

$$
\hat{\boldsymbol{c}}=
$$

(e) $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})$
(f) $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})$

$$
\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=
$$

\qquad
7. (10 pts each) For $\boldsymbol{a}=3 \mathbf{i}+4 \boldsymbol{j}+5 \boldsymbol{k}$ and $\boldsymbol{b}=2 \boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}$, find each of the following:
(a) Direction cosines for \boldsymbol{a}.

$$
\cos \alpha=
$$

$\cos \beta=$ \qquad
$\cos \gamma=$ \qquad
(b) The angle θ between \boldsymbol{a} and \boldsymbol{b}. (Just write a simplified expression. If you don't have a calculator just write the numerical formula for the angle.)
(c) Find the projection of $\quad \begin{gathered}\theta \\ \boldsymbol{b} \\ \text { onto }\end{gathered}$

Projection of \boldsymbol{b} onto $\boldsymbol{a}=$ \qquad
8. (10 pts each) For the planes given by
$3 x-2 y+5 z=16$
and
$4 x+2 y+z=13$, answer the following questions.
(a) Find the line of intersection between the planes and write that line in parametric equations.

Line: \qquad
(b) Find the equation of the plane that is perpendicular to the line of intersection and goes through the point (1, 3, 2).

Equation of plane: \qquad
9. (a) (10 pts) Convert $x^{2}+y^{2}=2 y+2 x$ from a Cartesian coordinate equation into an equation in cylindrical coordinates.

Answer:
(b) (10 pts) Convert $r=2 \sin \theta$ from a cylindrical coordinate equation into an equation in Cartesian coordinates.

Answer: \qquad

