Math2210 Midterm 1	Summer, 2010	Dylan Zwick

Name _____ Date _____

<u>Instructions</u>: Please show all of your work as partial credit will be given where appropriate, **and** there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. For $x = t^3 - 4t$ and $y = t^2 - 4$ such that $-3 \le t \le 3$, do the following:

(a) (10 pts) Eliminate the parameter to obtain the corresponding Cartesian equation.

Answer 1(a): _____

(b) (10 pts) Graph the curve.

(c) (5 pts) Indicate if the curve is simple and/or closed.

Simple: T or F (circle one)

Closed: T or F (circle one)

2. (10 pts) Find the length of the curve given by $x = t + \frac{1}{t}$ and $y = \ln t^2$ for $1 \le t \le 4$.

Answer 2: ______ 3. (15 pts) For position vector given by $r(t)=t^3 i+t^2+2t j+\ln t k$, find the velocity and acceleration vectors and the speed at t=3.

- $\boldsymbol{v}(t) =$ _____
- **a**(t) =_____

speed at t=3 =_____

4. (10 pts) Find the limit, if it exists. $\lim_{t \to 0} \left[\frac{3t^2 \tan t}{2t^3} \mathbf{i} - \frac{4t}{t^2 - 1} \mathbf{j} + \frac{3t^2}{1 - \cos^2 t} \mathbf{k} \right]$

Answer (4) : _____

5. (10 pts) Find the equation of the sphere that has the line segment joining (0, 2, 3) and (4, 0, 5) as a diameter.

Radius = _____ units

center = _____

Eqn of sphere: _____

6. (10 pts each) Let $a=\langle 2,0,3\rangle$, $b=\langle -3,1,4\rangle$ and c=5i+2k. Find each of the following. (a) 2a-3c

(b) $\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})$

2a - 3c =_____

(c) $\boldsymbol{b} \cdot \boldsymbol{c} - |\boldsymbol{b}|$

 $\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c}) =$

 $b \cdot c - |b| =$ _____

(Note: This is # 6 continued.)	$a=\langle 2,0,3 angle$,	$b = \langle -3, 1, 4 \rangle$	and	c=5i+2k	
(d) $\hat{m{c}}$ (the unit vector)					

c =_____

(e) $a \times (b \times c)$

 $a \times (b \times c) =$

(f) $\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})$

7. (10 pts each) For a=2i-j+3k and b=i+2j-k, find each of the following:

(a) Direction cosines for a .

 $\cos \alpha =$

 $\cos\beta =$ _____

 $\cos \gamma =$

(b) The angle θ between a and b. (Just write a simplified expression. If you don't have a calculator just write the numerical formula for the angle.)

 $\theta =$ _____(c) Find the projection of **b** onto **a** .

Projection of b onto a = _____

8. (10 pts each) For the planes given by 4x - y + 2z = 7 and 5x + 3z = 13, answer the following questions.

(a) Find the line of intersection between the planes and write that line in parametric equations.

Line: _____

(b) Find the equation of the plane that is perpendicular to the line of intersection and goes through the point (0, 2, 1).

Equation of plane:

9. (a) (10 pts) Convert $2x^2+2y^2=5y+81$ from a Cartesian coordinate equation into an equation in cylindrical coordinates.

(b) (10 pts) Convert $\rho = -3 \sec \phi$ from a spherical coordinate equation into an equation in Cartesian coordinates.

Extra Credit: (10 pts)

A luxury cruiseliner is traveling due west at only 8 miles per hour. A woman on the ship is running across the ship, heading due north, at 6 miles per hour. What are the magnitude and direction of her velocity relative to the surface of the water? (If you don't have a calculator, just give the angle in simplified form.)

velocity magnitude: _____

velocity direction: _____