Name _____ Date ____

<u>Instructions</u>: Please show all of your work as partial credit will be given where appropriate, **and** there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (8 points) For $f(x) = \frac{2(x-5)^2}{x}$

(with derivatives given by $f'(x) = \frac{2x^2 - 50}{x^2}$, $f''(x) = \frac{100}{x^3}$)

(a) Find the x-value of the vertical asymptote. (1 point)

V.A.:_____

(b) Fill in the sign line for f'(x). (2 points)

<----->

(c) Find all local min and max points, if there are any. (2 points)

Max points: _____

Min points:

(d) Fill in the sign line for f''(x) . (2 points)

<----->

(e) Find all inflection points, if there are any. (1 point)

Inflection points:

derivatives) applies. If it does, find all acceptable values of c. If not, then state the reason.	
	MVT applies: True or False (circle one)
	If true, then c =
	If false, then why?
3. (3 points) Evaluate.	
	$\int \left(3 x^4 - \sin x + \sqrt[5]{x^3}\right) dx$
	$\int (3x - \sin x + \sqrt{x}) dx$
	Answer 3:

2. (4 points) For $f(x)=2x^2-5x+1$ on [0, 3], decide whether or not the Mean Value Theorem (for