Solutions for Introduction to Polynomial Calculus

Section 1 Problems

Bob Palais

The point-slope form of the equation of a line says that the rise over the run between an arbitrary point on a line (x, y) and a particular point $\left(x_{0}, y_{0}\right)$ on that line is constant, m, called the slope of the line. This describes a relationship of direct proportionality or linearity between the rise and the run. The rise is the change in $y, y-y_{0}$, and the run is the change in $x, x-x_{0}$, so $\frac{y-y_{0}}{x-x_{0}}=m$. Since the ratio is undefined for the point $\left(x_{0}, y_{0}\right)$, it is common to cross multiply so that this point fits the equation explicitly: $y-y_{0}=m\left(x-x_{0}\right)$. If you are given two points on a line, they may be used to compute its slope, and either may be used in the point-slope form.

So for (1)-(6) I'm giving not only the slope which the problem asks for but also the point-slope equation of the line.
(1) $m=\frac{2-1}{1-0}=1$ and the equation is $y-1=1(x-0)$ or $y-2=1(x-1)$.
(2) $m=\frac{7-3}{4-2}=2$ and the equation is $y-3=2(x-2)$ or $y-7=2(x-4)$.
(3) $m=\frac{2-1}{3-1}=\frac{1}{2}$ and the equation is $y-1=\frac{1}{2}(x-1)$ or $y-2=\frac{1}{2}(x-3)$.
(4) $m=\frac{2-4}{3-1}=-1$ and the equation is $y-4=-1(x-1)$ or $y-2=-1(x-3)$.
(5) $m=\frac{1-3}{3-(-2)}=-\frac{2}{5}$ and the equation is $y-3=-\frac{2}{5}(x-(-2))$ or $y-1=-\frac{2}{5}(x-3)$.
(6) $m=\frac{2-0}{0-(-2)}=1$ and the equation is $y-0=1(x-(-2))$ or $y-2=1(x-0)$.
(7) $y-0=2(x-0)$
(8) $y-2=5(x-1)$
(9) $y-(-1)=-3(x-2)$
(10) $y-1=\frac{1}{2}(x-1)$
(11) $y-5=-\frac{2}{3}(x-0)$
(12) $y-0=7(x-(-2))$

I intentionally prefer the $(x-(-a))$ form to $(x+a)$ because it displays the important information more clearly. I do not require or encourage oversimplification of answers! Conversion to slope-intercept form is not required or encouraged either as long as you know how to do it. Usually points other than $x=0$ are more important and it is better to refer equations to the point of interest. The slope-intercept form is nice when you wish to extend to polynomials in standard form: $a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, but even polynomials have useful forms adapted to another point: $a_{0}+a_{1}(x-c)+\ldots+a_{n}(x-c)^{n}$, or even useful 'multiple center' forms: $a_{0}+\left(x-c_{1}\right)\left(a_{1}+\ldots+\left(x-c_{n}\right)\left(a_{n}\right]\right.$.
(13) $y=3 x+1$
(14) $y=\frac{4}{3} x+2$
(15) Put the equation in slope-intercept form by adding $2 y$ to both sides, subtracting 4 from both sides, and dividing by 2 : $y=3 x-2$, so the slope is 3 and the y-intercept is -2 .
(16) Put the equation in slope-intercept form by subtracting $2 x$ from both sides, and dividing by 5: $y=-\frac{2}{5} x+\frac{3}{5}$, so the slope is $-\frac{2}{5}$ and the y-intercept is $\frac{3}{5}$.
(17) Parallel lines have the same slope, so $y-1=3(x-1)$
(18) The equation of any non-vertical line containing the point $(2,-1)$ is $y-(-1)=$ $m(x-2)$. Parallel lines have the same slope, so $m=\frac{2-0}{3-2}=2$. So the equation is $y-(-1)=2(x-2)$.
(19) The slope of any line perpendicular to a line with slope $m \neq 0$ is $-\frac{1}{m}$, the 'negative reciprocal' rule. So $y-0=-\frac{1}{3}(x-1)$.
(20) To find the midpoint of two points and the bisector of the segment joining them, compute the simple average their horizontal and vertical coordinates respectively: $\frac{0+2}{2}=1$ and $\frac{0+4}{2}=2$ so the line goes through the point $(1,2)$. The slope of the segment is $\frac{4-0}{2-0}=2$, so the slope of any line perpendicular to it is $-\frac{1}{2}$ and the equation of the line with this slope through that point is $y-2=-\frac{1}{2}(x-1)$.
(21) The slope of any line perpendicular to a vertical line $x=c$ is $m=0$. So $y-1=0$ or $y=1$ whose graph is horizontal.
(22) The equation of any line perpendicular to a horizontal line $y=c$ is of the form $x=c$ and its slope is undefined. So $x=2$.
(23) The line $2 y-x=4$ has slope $\frac{1}{2}$ so the equation of a line through the point $(1,1)$ which is perpendicular to this line is $y-1=-2(x-1)$. The intersection of these lines may be found by solving the latter for $y=-2 x+3$ and substituting into the equation of the first line: $2(-2 x+3)-x=4$ so $x=\frac{2}{5}$ and $y=\frac{11}{5}$. By Pythagoras, this is the closest point on the line $2 y-x=4$ to the point $(1,1)$ because the distance to any other point is the hypotenuse of a right triangle with one side being the segment between these points. This distance is $\sqrt{\left(\frac{2}{5}-1\right)^{2}+\left(\frac{11}{5}-1\right)^{2}}=\frac{3 \sqrt{5}}{5}$.
(24) The line $y=2 x-3$ has slope 2 so the equation of a line through the point $(0,1)$ which is perpendicular to this line is $y-1=-\frac{1}{2}(x-0)$. The intersection of these lines may be found by substituting this into the equation of the first line: $-\frac{1}{2} x+1=2 x-3$ so $x=\frac{8}{5}$ and $y=\frac{1}{5}$. The distance from $(0,1)$ to this point, hence to the line, is This distance is $\sqrt{\left(\frac{8}{5}-0\right)^{2}+\left(\frac{1}{5}-1\right)^{2}}=\frac{4 \sqrt{5}}{5}$.
(25) The point $(0,0)$ is on the line $y=2 x$. Both lines have slope 2 so the equation of a line through the point $(0,0)$ which is perpendicular to the line $y=2 x+3$ line is $y-0=-\frac{1}{2}(x-0)$. The intersection of those lines may be found by substituting one into other: $-\frac{1}{2} x=2 x+3$ so $x=-\frac{6}{5}$ and $y=\frac{3}{5}$. The distance from $(0,0)$ to this point,
which is the shortest distance between point on one line and any point on the other, is $\sqrt{\left(-\frac{6}{5}-0\right)^{2}+\left(\frac{3}{5}-1\right)^{2}}=\frac{3 \sqrt{5}}{5}$.

Solutions for Introduction to Polynomial Calculus

Section 2 Problems - The Slope of a Curve

Bob Palais

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{3(1+h)+2-(3(1)+2)}{h}=\frac{3 h}{h} \tag{1}
\end{equation*}
$$

which equals 3 for $h \neq 0$. The value which any polynomial expression in h approaches as h approaches 0 may be determined by setting h equal to 0 . Note that before the h is removed from the denominator by finding an expression which is equivalent as long as $h \neq 0$, the expression is not a polynomial in h and cannot even be evaluated at $h=0$.

In this case, the polynomial expression, 3 , is a constant and does not even involve h. Evaluating the polynomial $p(h)=3$ at $h=0$ gives $p(0)=3$, so this 'difference quotient' approaches 3 as h approaches 0 . Since the curve $y=f(x)$ is a straight line with slope 3 , we'd better hope that the slope of a curve computation reduces to the same slope as the line, and indeed it does. Since $f(1)=5$, The tangent line at $(1,5)$ is $y-5=3(x-0)$.

Note on the interpretation and manipulation of expressions of the form $f(x+h)$: Many students interpret $f(x+h)$ purely symbolically and literally, symbolically replace any occurence of x with $x+h$. This is not a totally unreasonable idea since we teach to 'put what is in the parentheses whereever x is', but is correct in the context. For instance, if $f(x)=4 x$ one might incorrectly write $f(x+h)=4 x+h$, or if $g(x)=x^{2}$, one might incorrectly write $g(x+h)=x+h^{2}$. One 'systematic' way to avoid this would be always to replace x by what is between the parentheses surrounded by parentheses. In the above examples this would correctly give $f(x+h)=4(x+h)$ and $g(x+h)=(x+h)^{2}$. The only problem is for 'simple' arguments in the parentheses it will give strange looking, yet not incorrect, extraneous parentheses, for example $f(a)=4(a)$ or $g(3)=(3)^{2}$. You can easily remove these when you are sure they are not needed. An essentially equivalent conceptual approach is to understand the meaning of $f(x)=4 x$ as 'the function which multiplies its input (argument) by 4 , so $f(x+h)$ says multiply $x+h$ by 4 , and we know 4 times $x+h$ is $4(x+h)=4 x+4 h$ and not $4 x+h$. Similarly $g(x)=x^{2}$ is the function which squares its input, so $g(x+h)$ is the $x+h$ squared, which is $(x+h)^{2}=x^{2}+2 x h+h^{2}$, and not $x+h^{2}$.

The following problems also use the above fact that $(x+h)^{2}=x^{2}+2 x h+h^{2}$, and $(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$. These are special cases of the binomial rule

$$
(x+h)^{n}=\sum_{j=0}^{n} C(n, j) x^{n-j} h^{j}
$$

where $C(n, j)$ is the number of different ways of choosing j objects from a set of n objects when the order does not matter.

See http://www.math.utah.edu/~palais/mst/Pascal.html for a flash application connecting different interpretations of $C(n, j)$ and demonstrating concretely the recursive formula known as Pascal's Triangle, $C(n, j)=C(n-1, j-1)+C(n-1, j)$ and the direct
formula for computing $C(n, j)=\frac{n!}{j!(n-j)!}$. (The symbol $n!$, spoken n factorial, represents the product of the positive integers less than or equal to n : $n!=1 \cdot 2 \cdots n$.

One of the coolest and most powerful results accessible in the first year of calculus is the ability to generalize the binomial rule to the situation where n is not a positive integer, and develop analogous formulas for $\frac{1}{1+x}=(1+x)^{-1}$ and $\sqrt{1+x}=(1+x)^{1 / 2}$, etc.

$$
\begin{equation*}
\frac{f(0+h)-f(0)}{h}=\frac{h^{2}-0}{h}=\frac{h^{2}}{h} \tag{2}
\end{equation*}
$$

which equals h for $h \neq 0$. Evaluating the polynomial $p(h)=h$ at $h=0$ gives $p(0)=h$, so this 'difference quotient' approaches 0 as h approaches 0 . The curve $y=f(x)$ is a parabola with its vertex pointing down at $(0,0)$ and by symmetry, we would expect its slope there would be 0 and indeed it does. The tangent line is horizontal: $y-0=0(x-0)$.

$$
\begin{equation*}
\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{2}-2^{2}}{h}=\frac{4+4 h+h^{2}-4}{h}=\frac{4 h+h^{2}}{h} \tag{3}
\end{equation*}
$$

which equals $4+h$ for $h \neq 0$. Evaluating the polynomial $p(h)=4+h$ at $h=0$ gives $p(0)=4$, so this 'difference quotient' approaches 4 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(2)=4$, The tangent line at $(2,4)$ is $y-4=4(x-2)$.

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{(1+h)^{2}-3-\left(1^{2}-3\right)}{h}=\frac{1+2 h+h^{2}-3-(1-3)}{h}=\frac{2 h+h^{2}}{h} \tag{4}
\end{equation*}
$$

which equals $2+h$ for $h \neq 0$. Evaluating the polynomial $p(h)=2+h$ at $h=0$ gives $p(0)=2$, so this 'difference quotient' approaches 2 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(1)=-2$, The tangent line at $(1,-2)$ is $y-(-2)=2(x-1)$.

$$
\begin{equation*}
\frac{f(0+h)-f(0)}{h}=\frac{h^{2}+2 h-1-(-1)}{h}=\frac{h^{2}+2 h}{h} \tag{5}
\end{equation*}
$$

which equals $h+2$ for $h \neq 0$. Evaluating the polynomial $p(h)=h+2$ at $h=0$ gives $p(0)=2$, so this 'difference quotient' approaches 2 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(0)=-1$, The tangent line at $(0,-1)$ is $y-(-1)=2(x-0)$.

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{3(1+h)^{2}-2-\left(3(1)^{2}-2\right)}{h}=\frac{3+6 h+3 h^{2}-2-(3-2)}{h}=\frac{6 h+3 h^{2}}{h} \tag{6}
\end{equation*}
$$

which equals $6+3 h$ for $h \neq 0$. Evaluating the polynomial $p(h)=6+3 h$ at $h=0$ gives $p(0)=6$, so this 'difference quotient' approaches 6 as h approaches 0 . The curve $y=f(x)$ is a parabola. Since $f(1)=1$, The tangent line at $(1,1)$ is $y-1=6(x-1)$.

$$
\begin{equation*}
\frac{f(1+h)-f(1)}{h}=\frac{(1+h)^{3}-1^{3}}{h}=\frac{\left.1+3 h+3 h^{2}+h^{3}-1\right)}{h}=\frac{3 h+3 h^{2}+h^{3}}{h} \tag{7}
\end{equation*}
$$

which equals $3+3 h+h^{2}$ for $h \neq 0$. Evaluating the polynomial $p(h)=3+3 h+h^{2}$ at $h=0$ gives $p(0)=3$, so this 'difference quotient' approaches 3 as h approaches 0 . Since $f(1)=1$, The tangent line at $(1,1)$ is $y-1=3(x-1)$.

$$
\begin{equation*}
\frac{f(0+h)-f(0)}{h}=\frac{h^{3}-0^{3}}{h}==\frac{h^{3}}{h} \tag{8}
\end{equation*}
$$

which equals h^{2} for $h \neq 0$. Evaluating the polynomial $p(h)=h^{2}$ at $h=0$ gives $p(0)=0$, so this 'difference quotient' approaches 0 as h approaches 0 . Since $f(0)=0$, The tangent line at $(0,0)$ is $y-0=0(x-0)$.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)-x)}{h}=\frac{h}{h} \tag{9}
\end{equation*}
$$

which equals 1 for $h \neq 0$. Evaluating the polynomial $p(h)=1$ at $h=0$ gives $p(0)=1$, so this 'difference quotient' approaches 1 as h approaches 0 for any value of x and $f^{\prime}(x)=1$. Since the curve $y=f(x)$ is a straight line with slope 1 , we'd better hope that the slope of a curve computation reduces to the same slope as the line, and indeed it does.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{2(x+h)+5-(2 x+5)}{h}=\frac{2 h}{h} \tag{10}
\end{equation*}
$$

which equals 2 for $h \neq 0$. Evaluating the polynomial $p(h)=2$ at $h=0$ gives $p(0)=2$, so this 'difference quotient' approaches 2 as h approaches 0 for any value of x and $f^{\prime}(x)=2$. Since the curve $y=f(x)$ is a straight line with slope 2 , we'd better hope that the slope of a curve computation reduces to the same slope as the line, and indeed it does.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{\left.3(x+h)^{2}-3 x^{2}\right)}{h}=\frac{3 x^{2}+6 x h+3 h^{2}-3 x^{2}}{h}=\frac{6 x h+3 h^{2}}{h} \tag{11}
\end{equation*}
$$

which equals $6 x+3 h$ for $h \neq 0$. Evaluating the polynomial $p(h)=6 x+3 h$ at $h=0$ gives $p(0)=6 x$, so this 'difference quotient' approaches $6 x$ as h approaches 0 for any value of x and $f^{\prime}(x)=6 x$. The curve $y=f(x)$ is a parabola, and it makes sense when $x>0$ to the right of the downward pointing vertes, the slope increases as x increases.

$$
\begin{align*}
& \frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}-2(x+h)+3-\left(x^{2}-2 x+3\right)}{h} \tag{12}\\
= & \frac{x^{2}+2 x h+h^{2}-2 x-2 h+3-x^{2}+2 x-3}{h}=\frac{2 x h+h^{2}-2 h}{h}
\end{align*}
$$

which equals $2 x+h-2$ for $h \neq 0$. Evaluating the polynomial $p(h)=2 x+h-2$ at $h=0$ gives $p(0)=2 x-2$, so this 'difference quotient' approaches $2 x-2$ as h approaches 0 for any value of x and $f^{\prime}(x)=2 x-2$.

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}-x^{3}}{h}=\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \tag{13}
\end{equation*}
$$

which equals $3 x^{2}+3 x h+h^{2}$ for $h \neq 0$. Evaluating the polynomial $p(h)=3 x^{2}+3 x h+h^{2}$ at $h=0$ gives $p(0)=3 x^{2}$, so this 'difference quotient' approaches $3 x^{2}$ as h approaches 0 for any value of x and $f^{\prime}(x)=3 x^{2}$.

$$
\begin{gather*}
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}+(x+h)^{2}-\left(x^{3}-x^{2}\right)}{h} \tag{14}\\
=\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+x^{2}+2 x h+h^{2}-x^{3}-x^{2}}{h}=\frac{3 x^{2} h+3 x h^{2}+h^{3}+2 x h+h^{2}}{h}
\end{gather*}
$$

which equals $3 x^{2}+3 x h+h^{2}+2 x+h$ for $h \neq 0$. Evaluating the polynomial $p(h)=$ $3 x^{2}+3 x h+h^{2}+2 x+h$ at $h=0$ gives $p(0)=3 x^{2}+2 x$, so this 'difference quotient' approaches $3 x^{2}+2 x$ as h approaches 0 for any value of x and $f^{\prime}(x)=3 x^{2}+2 x$.

These examples should show you three patterns.

1. The derivative of the sum of functions will equal the sum of the derivatives:

If $f(x)=u(x)+v(x)$ then $f^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)$. The aspects of the computation that always led to this did not have to do with the fact that the functions in the examples were polynomials.
2. The derivative of a constant multiple of a functions will equal the same constant multiple of its derivative:

If $f(x)=c(u(x))$ where c is a constant, then $f^{\prime}(x)=c\left(u^{\prime}(x)\right)$. The aspects of the computation that always led to this did not have to do with the fact that the functions in the examples were polynomials.
3. The derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$ which comes from the binomial rule, $(x+h)^{n}=x^{n}+n x^{n-1} h+\ldots$.

More solutions on the following page!!

(15) The point-slope form of a line containing the point $(-2,4)$ is $y-4=m(x-(-2))$, where m is the slope. Using the definition of a tangent line, $m=f^{\prime}(-2)$ where $f(x)=x^{2}$, so $f^{\prime}(x)=2 x$. Therefore, $m=2(-2)=-4$ and the equation of the tangent line is $y-4=$ $-4(x-(-2))$. Note that we only need to be given the x-value, -2 , from which we could compute the corresponding y-value, $f(-2)=4$. The given equation $y-4=-4(x-(-2))$ corresponds to the form given in the notes, $y-f(a)=f^{\prime}(a)(x-a)$ with $f(x)=x^{2}$ and $a=-2$. Depending on the situation, you may or may not wish to 'simplify' $(x-(-2))$ to $x+2$ because the first form exhibits the key information more clearly, and from this point of view, the latter form is not a 'simplification'.
(16) The point-slope form of a line containing the point $(2,-2)$ is $y-(-2)=m(x-2)$, where m is the slope. Using the definition of a tangent line, $m=f^{\prime}(2)$ where $f(x)=x^{2}-3 x$, so $f^{\prime}(x)=2 x-3$. Therefore, $m=2(2)-3=1$ and the equation of the tangent line is $y-(-2)=1(x-2)$. Note that we only need to be given the x-value, 2 , from which we could compute the corresponding y-value, $f(2)=-2$. The given equation $y-(-2)=1(x-2)$ corresponds to the form given in the notes, $y-f(a)=f^{\prime}(a)(x-a)$ with $f(x)=x^{2}-3 x$ and $a=2$. Again, whether you choose to 'simplify' $(y-(-2))$ to $y+2$ depends on the situation. Using ' $+c$ ' may save an arithmetic operation in a computation, but $-(-c)$ may have more clarity.

Solutions for Introduction to Polynomial Calculus
 Section 3 Problems - The Derivative of a Polynomial
 Bob Palais

Calling the function in each problem $f(x)$ and using the three rules from the previous section:

The derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$.
If $f(x)=u(x)+v(x)$ then $f^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)$.
If $f(x)=c(u(x))$ where c is a constant, then $f^{\prime}(x)=c\left(u^{\prime}(x)\right)$.
(1) $f^{\prime}(x)=9 x^{8}$.
(2) $f^{\prime}(x)=100 x^{49}$.
(3) $f^{\prime}(x)=3$.
(4) $f^{\prime}(x)=3 x^{2}-2$.
(5) $f^{\prime}(x)=8 x^{3}+3 x^{2}-10 x+1$.
(6) $f^{\prime}(x)=11 x^{10}-18 x^{8}+15$.

Computing $f^{\prime}(x)$ and setting x equal to the x value at the given point on the graph:
(7) $f^{\prime}(x)=3 x^{2}$, and $f^{\prime}(1)=3$ gives the slope of the curve at $(1,1)$, as in problem (7) of the previous section. If you prefer when the function is given as $y=f(x)$ you may prefer to use $\frac{d y}{d x}$ (Leibniz notation) instead of $f^{\prime}(x)$ (Newton notation). Then instead of $f^{\prime}(1)$ we sometimes write $\left.\frac{d y}{d x}\right|_{x=1}$ or even $\frac{d y}{d x}(1)$.
(8) $f^{\prime}(x)=2 x$, and $f^{\prime}(0)=0$ gives the slope of the curve at $(0,0)$, as in problem (2) of the previous section.
(9) $f^{\prime}(x)=3 x^{2}-2 x$, and $f^{\prime}(1)=1$ gives the slope of the curve at $(1,0)$.
(10) $f^{\prime}(x)=4 x^{3}-6 x^{2}+5$, and $f^{\prime}(2)=13$ gives the slope of the curve at $(2,7)$. The y-value comes from evaluating $f(2)$. The equation for the tangent line is $y-7=13(x-2)$.
(11) $f^{\prime}(x)=10 x^{9}-5 x^{4}$, and $f^{\prime}(1)=5$ gives the slope of the curve at $(1,0)$. The y-value comes from evaluating $f(1)$. The equation for the tangent line is $y-0=5(x-1)$.
(12) $f^{\prime}(x)=2 x-2$, and $f^{\prime}(x)=0$ when $2 x-2=0$ or $x=1, f^{\prime}(x)>0$ when $2 x-2>0$ or $x>1$, and $f^{\prime}(x)<0$ when $2 x-2<0$ or $x<1$. In words, the curve has positive slope for $x>1$, negative slope for $x<1$ and zero slope for $x=1$.
(13) The (vertical) velocity of the ball t seconds after it is thrown is given by $\frac{d s}{d t}=$ $s^{\prime}(t)=-32 t+32$. The ball reaches its maximum height when its velocity changes from positive to negative, i.e., when $s^{\prime}(t)=-32 t+32=0$ or $t=1$. The height of the ball at $t=1$ is $s(1)=22$ feet.
(14) The (vertical) acceleration of the ball t seconds after it is thrown is given by $\frac{d^{2} s}{d t^{2}}=s^{\prime}(t)=-32$ feet per second per second or feet per second squared. The velocity loses a constant 32 feet per second upward every second.

Solutions for Introduction to Polynomial Calculus

Section 4 Problems - Antiderivatives of Polynomials

Bob Palais

Calling the function in each problem $f(x)$ and using the three antidifferentiation rules corresponding to the previous three differentiation rules:

The antiderivative of $f(x)=x^{n}$ is $\int f(x) d x=\frac{x^{n+1}}{n+1}+C$.
If $f(x)=u(x)+v(x)$ then $\int f(x) d x=\int u(x) d x+\int v(x) d x$.
If $f(x)=c(u(x))$ where c is a constant, then $\int f(x) d x=c \int u(x) d x$.
(1) $\int f(x) d x=x^{2}-3 x+C$. You should check this by taking its derivative!
(2) $\int f(x) d x=x^{3}-2 x^{2}+5 x+C$.
(3) $\int f(x) d x=\frac{x^{6}}{6}+\frac{x^{4}}{2}+x+C$.
(4) $\int f(x) d x=x^{10}-4 x^{2}+C$.

Find the general antiderivative then impose the condition to determine C :
(5) $F(x)=\int f(x) d x=\frac{x^{3}}{3}-5 x+C$ and $F(0)=2$ says $C=2$, so $F(x)=\frac{x^{3}}{3}-5 x+2$.
(6) $F(x)=\int f(x) d x=2 x^{4}-x^{2}+C$ and $F(1)=4$ says $2-1+C=4$, so $C=3$ and $F(x)=2 x^{4}-x^{2}+3$.
(7) $F(x)=\int f(x) d x=\frac{x^{4}}{2}+C$ and $F(1)=1$ says $\frac{1}{2}+C=1$, so $C=\frac{1}{2}$ and $F(x)=\frac{x^{4}}{2}+\frac{1}{2}$.
(8) $F(x)=\int f(x) d x=\frac{x^{4}}{4}-\frac{x^{2}}{2}+C$ and $F(2)=1$ says $4-2+C=1$, so $C=-1$ and $F(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}-1$.
(9) The derivative of velocity is acceleration, and the acceleration of any body near the earth's surface under only the force of gravity is -32 feet per second squared. Since the (vertical) velocity is then the antiderivative of the acceleration,

$$
v(t)=\int a(t) d t=\int-32 d t=-32 t+C
$$

feet per second. We are given that $v(0)=64$ feet per second, so $0+C=64$ and $v(t)=$ $-32 t+64$ feet per second is the velocity after t seconds. The ball will achieve its maximum height when its vertical velocity changes from positive to negative, i.e., when $v(t)=-32 t+$ $64=0$, so when $t=2$ seconds.
(10) The derivative of (vertical) displacement, or height, is velocity, and the velocity of the ball is $v(t)=-32 t+64$ from the previous problem. Since the (vertical) displacement is then the antiderivative of the velocity,

$$
s(t)=\int v(t) d t=\int-32 t+64 d t=-16 t^{2}+64 t+C
$$

feet. We are given that $s(0)=6$ feet, so $0+0+C=6$ and $s(t)=-16 t^{2}+64 t+6$ feet is the height of the ball after t seconds. Since the ball achieves its maximum height when $t=2$ seconds, the maximum height it achieves is $s(2)=70$ feet.

