
Solutions for Introduction to Polynomial Calculus

Section 1 Problems

Bob Palais

The point-slope form of the equation of a line says that the rise over the run between
an arbitrary point on a line (x, y) and a particular point (x0, y0) on that line is constant,
m, called the slope of the line. This describes a relationship of direct proportionality or
linearity between the rise and the run. The rise is the change in y, y−y0, and the run is the
change in x, x − x0, so y−y0

x−x0

= m. Since the ratio is undefined for the point (x0, y0), it is
common to cross multiply so that this point fits the equation explicitly: y−y0 = m(x−x0).
If you are given two points on a line, they may be used to compute its slope, and either
may be used in the point-slope form.

So for (1)-(6) I’m giving not only the slope which the problem asks for but also the
point-slope equation of the line.

(1) m = 2−1
1−0

= 1 and the equation is y − 1 = 1(x − 0) or y − 2 = 1(x − 1).

(2) m = 7−3
4−2

= 2 and the equation is y − 3 = 2(x − 2) or y − 7 = 2(x − 4).

(3) m = 2−1
3−1

= 1
2

and the equation is y − 1 = 1
2
(x − 1) or y − 2 = 1

2
(x − 3).

(4) m = 2−4
3−1

= −1 and the equation is y − 4 = −1(x − 1) or y − 2 = −1(x − 3).

(5) m = 1−3
3−(−2)

= −2
5

and the equation is y−3 = −2
5
(x− (−2)) or y−1 = −2

5
(x−3).

(6) m = 2−0
0−(−2) = 1 and the equation is y − 0 = 1(x − (−2)) or y − 2 = 1(x − 0).

(7) y − 0 = 2(x − 0)

(8) y − 2 = 5(x − 1)

(9) y − (−1) = −3(x − 2)

(10) y − 1 = 1
2
(x − 1)

(11) y − 5 = −2
3 (x − 0)

(12) y − 0 = 7(x − (−2))

I intentionally prefer the (x− (−a)) form to (x+ a) because it displays the important
information more clearly. I do not require or encourage oversimplification of answers!
Conversion to slope-intercept form is not required or encouraged either as long as you
know how to do it. Usually points other than x = 0 are more important and it is better to
refer equations to the point of interest. The slope-intercept form is nice when you wish to
extend to polynomials in standard form: a0 +a1x+ . . .+anx

n, but even polynomials have
useful forms adapted to another point: a0 + a1(x − c) + . . . + an(x − c)n, or even useful
‘multiple center’ forms: a0 + (x − c1)(a1 + . . . + (x − cn)(an].
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(13) y = 3x + 1

(14) y = 4
3x + 2

(15) Put the equation in slope-intercept form by adding 2y to both sides, subtracting
4 from both sides, and dividing by 2: y = 3x − 2, so the slope is 3 and the y−intercept is
−2.

(16) Put the equation in slope-intercept form by subtracting 2x from both sides, and
dividing by 5: y = −2

5x + 3
5 , so the slope is −2

5 and the y−intercept is 3
5 .

(17) Parallel lines have the same slope, so y − 1 = 3(x − 1)

(18) The equation of any non-vertical line containing the point (2,−1) is y − (−1) =
m(x − 2). Parallel lines have the same slope, so m = 2−0

3−2 = 2. So the equation is
y − (−1) = 2(x − 2).

(19) The slope of any line perpendicular to a line with slope m 6= 0 is − 1
m

, the
‘negative reciprocal’ rule. So y − 0 = −1

3
(x − 1).

(20) To find the midpoint of two points and the bisector of the segment joining them,
compute the simple average their horizontal and vertical coordinates respectively: 0+2

2
= 1

and 0+4
2 = 2 so the line goes through the point (1, 2). The slope of the segment is 4−0

2−0 = 2,

so the slope of any line perpendicular to it is −1
2 and the equation of the line with this

slope through that point is y − 2 = −1
2 (x − 1).

(21) The slope of any line perpendicular to a vertical line x = c is m = 0. So y−1 = 0
or y = 1 whose graph is horizontal.

(22) The equation of any line perpendicular to a horizontal line y = c is of the form
x = c and its slope is undefined. So x = 2.

(23) The line 2y − x = 4 has slope 1
2 so the equation of a line through the point (1, 1)

which is perpendicular to this line is y − 1 = −2(x − 1). The intersection of these lines
may be found by solving the latter for y = −2x + 3 and substituting into the equation of
the first line: 2(−2x + 3) − x = 4 so x = 2

5 and y = 11
5 . By Pythagoras, this is the closest

point on the line 2y − x = 4 to the point (1, 1) because the distance to any other point is
the hypotenuse of a right triangle with one side being the segment between these points.

This distance is
√

( 2
5 − 1)2 + ( 11

5 − 1)2 = 3
√

5
5 .

(24) The line y = 2x− 3 has slope 2 so the equation of a line through the point (0, 1)
which is perpendicular to this line is y − 1 = −1

2
(x − 0). The intersection of these lines

may be found by substituting this into the equation of the first line: −1
2x + 1 = 2x− 3 so

x = 8
5

and y = 1
5
. The distance from (0, 1) to this point, hence to the line, is This distance

is
√

( 8
5 − 0)2 + ( 1

5 − 1)2 = 4
√

5
5 .

(25) The point (0, 0) is on the line y = 2x. Both lines have slope 2 so the equation
of a line through the point (0, 0) which is perpendicular to the line y = 2x + 3 line is
y − 0 = −1

2
(x − 0). The intersection of those lines may be found by substituting one

into other: −1
2x = 2x + 3 so x = −6

5 and y = 3
5 . The distance from (0, 0) to this point,
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which is the shortest distance between point on one line and any point on the other, is
√

(−6
5 − 0)2 + ( 3

5 − 1)2 = 3
√

5
5 .
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Solutions for Introduction to Polynomial Calculus

Section 2 Problems - The Slope of a Curve

Bob Palais

(1)
f(1 + h) − f(1)

h
=

3(1 + h) + 2 − (3(1) + 2)

h
=

3h

h

which equals 3 for h 6= 0. The value which any polynomial expression in h approaches as h

approaches 0 may be determined by setting h equal to 0. Note that before the h is removed
from the denominator by finding an expression which is equivalent as long as h 6= 0, the
expression is not a polynomial in h and cannot even be evaluated at h = 0.

In this case, the polynomial expression, 3, is a constant and does not even involve h.
Evaluating the polynomial p(h) = 3 at h = 0 gives p(0) = 3, so this ‘difference quotient’
approaches 3 as h approaches 0. Since the curve y = f(x) is a straight line with slope 3,
we’d better hope that the slope of a curve computation reduces to the same slope as the
line, and indeed it does. Since f(1) = 5, The tangent line at (1, 5) is y − 5 = 3(x − 0).

Note on the interpretation and manipulation of expressions of the form f(x + h).:
Many students interpret f(x + h) purely symbolically and literally, symbolically replace
any occurence of x with x + h. This is not a totally unreasonable idea since we teach to
‘put what is in the parentheses whereever x is’, but is correct in the context. For instance,
if f(x) = 4x one might incorrectly write f(x + h) = 4x + h, or if g(x) = x2, one might
incorrectly write g(x + h) = x + h2. One ‘systematic’ way to avoid this would be always
to replace x by what is between the parentheses surrounded by parentheses. In the above
examples this would correctly give f(x + h) = 4(x + h) and g(x + h) = (x + h)2. The only
problem is for ‘simple’ arguments in the parentheses it will give strange looking, yet not
incorrect, extraneous parentheses, for example f(a) = 4(a) or g(3) = (3)2. You can easily
remove these when you are sure they are not needed. An essentially equivalent conceptual
approach is to understand the meaning of f(x) = 4x as ‘the function which multiplies its
input (argument) by 4, so f(x+h) says multiply x+h by 4, and we know 4 times x+h is
4(x + h) = 4x + 4h and not 4x + h. Similarly g(x) = x2 is the function which squares its
input, so g(x+ h) is the x + h squared, which is (x + h)2 = x2 + 2xh + h2, and not x + h2.

The following problems also use the above fact that (x + h)2 = x2 + 2xh + h2, and
(x + h)3 = x3 + 3x2h + 3xh2 + h3. These are special cases of the binomial rule

(x + h)n =

n∑

j=0

C(n, j)xn−jhj

where C(n, j) is the number of different ways of choosing j objects from a set of n objects
when the order does not matter.

See http://www.math.utah.edu/∼palais/mst/Pascal.html for a flash application con-
necting different interpretations of C(n, j) and demonstrating concretely the recursive for-
mula known as Pascal’s Triangle, C(n, j) = C(n − 1, j − 1) + C(n − 1, j) and the direct
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formula for computing C(n, j) = n!
j!(n−j)! . (The symbol n!, spoken n factorial, represents

the product of the positive integers less than or equal to n: n! = 1 · 2 · · ·n.

One of the coolest and most powerful results accessible in the first year of calculus is
the ability to generalize the binomial rule to the situation where n is not a positive integer,
and develop analogous formulas for 1

1+x = (1 + x)−1 and
√

1 + x = (1 + x)1/2, etc.

(2)
f(0 + h) − f(0)

h
=

h2 − 0

h
=

h2

h

which equals h for h 6= 0. Evaluating the polynomial p(h) = h at h = 0 gives p(0) = h, so
this ‘difference quotient’ approaches 0 as h approaches 0. The curve y = f(x) is a parabola
with its vertex pointing down at (0, 0) and by symmetry, we would expect its slope there
would be 0 and indeed it does. The tangent line is horizontal: y − 0 = 0(x − 0).

(3)
f(2 + h) − f(2)

h
=

(2 + h)2 − 22

h
=

4 + 4h + h2 − 4

h
=

4h + h2

h

which equals 4 + h for h 6= 0. Evaluating the polynomial p(h) = 4 + h at h = 0 gives
p(0) = 4, so this ‘difference quotient’ approaches 4 as h approaches 0. The curve y = f(x)
is a parabola. Since f(2) = 4, The tangent line at (2, 4) is y − 4 = 4(x − 2).

(4)

f(1 + h) − f(1)

h
=

(1 + h)2 − 3 − (12 − 3)

h
=

1 + 2h + h2 − 3 − (1 − 3)

h
=

2h + h2

h

which equals 2 + h for h 6= 0. Evaluating the polynomial p(h) = 2 + h at h = 0 gives
p(0) = 2, so this ‘difference quotient’ approaches 2 as h approaches 0. The curve y = f(x)
is a parabola. Since f(1) = −2, The tangent line at (1,−2) is y − (−2) = 2(x − 1).

(5)
f(0 + h) − f(0)

h
=

h2 + 2h − 1 − (−1)

h
=

h2 + 2h

h

which equals h + 2 for h 6= 0. Evaluating the polynomial p(h) = h + 2 at h = 0 gives
p(0) = 2, so this ‘difference quotient’ approaches 2 as h approaches 0. The curve y = f(x)
is a parabola. Since f(0) = −1, The tangent line at (0,−1) is y − (−1) = 2(x − 0).

(6)

f(1 + h) − f(1)

h
=

3(1 + h)2 − 2 − (3(1)2 − 2)

h
=

3 + 6h + 3h2 − 2 − (3 − 2)

h
=

6h + 3h2

h

which equals 6 + 3h for h 6= 0. Evaluating the polynomial p(h) = 6 + 3h at h = 0 gives
p(0) = 6, so this ‘difference quotient’ approaches 6 as h approaches 0. The curve y = f(x)
is a parabola. Since f(1) = 1, The tangent line at (1, 1) is y − 1 = 6(x − 1).
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(7)

f(1 + h) − f(1)

h
=

(1 + h)3 − 13

h
=

1 + 3h + 3h2 + h3 − 1)

h
=

3h + 3h2 + h3

h

which equals 3 + 3h + h2 for h 6= 0. Evaluating the polynomial p(h) = 3 + 3h + h2 at
h = 0 gives p(0) = 3, so this ‘difference quotient’ approaches 3 as h approaches 0. Since
f(1) = 1, The tangent line at (1, 1) is y − 1 = 3(x − 1).

(8)
f(0 + h) − f(0)

h
=

h3 − 03

h
==

h3

h

which equals h2 for h 6= 0. Evaluating the polynomial p(h) = h2 at h = 0 gives p(0) = 0,
so this ‘difference quotient’ approaches 0 as h approaches 0. Since f(0) = 0, The tangent
line at (0, 0) is y − 0 = 0(x − 0).

(9)
f(x + h) − f(x)

h
=

(x + h) − x)

h
=

h

h

which equals 1 for h 6= 0. Evaluating the polynomial p(h) = 1 at h = 0 gives p(0) = 1, so
this ‘difference quotient’ approaches 1 as h approaches 0 for any value of x and f ′(x) = 1.
Since the curve y = f(x) is a straight line with slope 1, we’d better hope that the slope of
a curve computation reduces to the same slope as the line, and indeed it does.

(10)
f(x + h) − f(x)

h
=

2(x + h) + 5 − (2x + 5)

h
=

2h

h

which equals 2 for h 6= 0. Evaluating the polynomial p(h) = 2 at h = 0 gives p(0) = 2, so
this ‘difference quotient’ approaches 2 as h approaches 0 for any value of x and f ′(x) = 2.
Since the curve y = f(x) is a straight line with slope 2, we’d better hope that the slope of
a curve computation reduces to the same slope as the line, and indeed it does.

(11)

f(x + h) − f(x)

h
=

3(x + h)2 − 3x2)

h
=

3x2 + 6xh + 3h2 − 3x2

h
=

6xh + 3h2

h

which equals 6x + 3h for h 6= 0. Evaluating the polynomial p(h) = 6x + 3h at h = 0 gives
p(0) = 6x, so this ‘difference quotient’ approaches 6x as h approaches 0 for any value of x

and f ′(x) = 6x. The curve y = f(x) is a parabola, and it makes sense when x > 0 to the
right of the downward pointing vertes, the slope increases as x increases.

(12)
f(x + h) − f(x)

h
=

(x + h)2 − 2(x + h) + 3 − (x2 − 2x + 3)

h

=
x2 + 2xh + h2 − 2x − 2h + 3 − x2 + 2x − 3

h
=

2xh + h2 − 2h

h
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which equals 2x + h − 2 for h 6= 0. Evaluating the polynomial p(h) = 2x + h − 2 at h = 0
gives p(0) = 2x − 2, so this ‘difference quotient’ approaches 2x − 2 as h approaches 0 for
any value of x and f ′(x) = 2x − 2.

(13)

f(x + h) − f(x)

h
=

(x + h)3 − x3

h
=

x3 + 3x2h + 3xh2 + h3 − x3

h
=

3x2h + 3xh2 + h3

h

which equals 3x2 + 3xh + h2 for h 6= 0. Evaluating the polynomial p(h) = 3x2 + 3xh + h2

at h = 0 gives p(0) = 3x2, so this ‘difference quotient’ approaches 3x2 as h approaches 0
for any value of x and f ′(x) = 3x2.

(14)
f(x + h) − f(x)

h
=

(x + h)3 + (x + h)2 − (x3 − x2)

h

=
x3 + 3x2h + 3xh2 + h3 + x2 + 2xh + h2 − x3 − x2

h
=

3x2h + 3xh2 + h3 + 2xh + h2

h

which equals 3x2 + 3xh + h2 + 2x + h for h 6= 0. Evaluating the polynomial p(h) =
3x2 + 3xh + h2 + 2x + h at h = 0 gives p(0) = 3x2 + 2x, so this ‘difference quotient’
approaches 3x2 + 2x as h approaches 0 for any value of x and f ′(x) = 3x2 + 2x.

These examples should show you three patterns.

1. The derivative of the sum of functions will equal the sum of the derivatives:

If f(x) = u(x)+v(x) then f ′(x) = u′(x)+v′(x). The aspects of the computation that
always led to this did not have to do with the fact that the functions in the examples were
polynomials.

2. The derivative of a constant multiple of a functions will equal the same constant
multiple of its derivative:

If f(x) = c(u(x)) where c is a constant, then f ′(x) = c(u′(x)). The aspects of the
computation that always led to this did not have to do with the fact that the functions in
the examples were polynomials.

3. The derivative of f(x) = xn is f ′(x) = nxn−1 which comes from the binomial rule,
(x + h)n = xn + nxn−1h + . . ..

More solutions on the following page!!
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(15) The point-slope form of a line containing the point (−2, 4) is y−4 = m(x−(−2)),
where m is the slope. Using the definition of a tangent line, m = f ′(−2) where f(x) = x2,
so f ′(x) = 2x. Therefore, m = 2(−2) = −4 and the equation of the tangent line is y− 4 =
−4(x − (−2)). Note that we only need to be given the x-value, −2, from which we could
compute the corresponding y-value, f(−2) = 4. The given equation y − 4 = −4(x− (−2))
corresponds to the form given in the notes, y − f(a) = f ′(a)(x − a) with f(x) = x2 and
a = −2. Depending on the situation, you may or may not wish to ‘simplify’ (x− (−2)) to
x +2 because the first form exhibits the key information more clearly, and from this point
of view, the latter form is not a ‘simplification’.

(16) The point-slope form of a line containing the point (2,−2) is y−(−2) = m(x−2),
where m is the slope. Using the definition of a tangent line, m = f ′(2) where f(x) = x2−3x,
so f ′(x) = 2x − 3. Therefore, m = 2(2) − 3 = 1 and the equation of the tangent line is
y−(−2) = 1(x−2). Note that we only need to be given the x-value, 2, from which we could
compute the corresponding y-value, f(2) = −2. The given equation y − (−2) = 1(x − 2)
corresponds to the form given in the notes, y − f(a) = f ′(a)(x − a) with f(x) = x2 − 3x

and a = 2. Again, whether you choose to ‘simplify’ (y − (−2)) to y + 2 depends on the
situation. Using ‘+c’ may save an arithmetic operation in a computation, but −(−c) may
have more clarity.
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Solutions for Introduction to Polynomial Calculus

Section 3 Problems - The Derivative of a Polynomial

Bob Palais

Calling the function in each problem f(x) and using the three rules from the previous
section:

The derivative of f(x) = xn is f ′(x) = nxn−1.

If f(x) = u(x) + v(x) then f ′(x) = u′(x) + v′(x).

If f(x) = c(u(x)) where c is a constant, then f ′(x) = c(u′(x)).

(1) f ′(x) = 9x8.

(2) f ′(x) = 100x49.

(3) f ′(x) = 3.

(4) f ′(x) = 3x2 − 2.

(5) f ′(x) = 8x3 + 3x2 − 10x + 1.

(6) f ′(x) = 11x10 − 18x8 + 15.

Computing f ′(x) and setting x equal to the x value at the given point on the graph:

(7) f ′(x) = 3x2, and f ′(1) = 3 gives the slope of the curve at (1, 1), as in problem
(7) of the previous section. If you prefer when the function is given as y = f(x) you may
prefer to use dy

dx
(Leibniz notation) instead of f ′(x) (Newton notation). Then instead of

f ′(1) we sometimes write dy

dx
|x=1 or even dy

dx
(1).

(8) f ′(x) = 2x, and f ′(0) = 0 gives the slope of the curve at (0, 0), as in problem (2)
of the previous section.

(9) f ′(x) = 3x2 − 2x, and f ′(1) = 1 gives the slope of the curve at (1, 0).

(10) f ′(x) = 4x3 − 6x2 + 5, and f ′(2) = 13 gives the slope of the curve at (2, 7). The
y-value comes from evaluating f(2). The equation for the tangent line is y−7 = 13(x−2).

(11) f ′(x) = 10x9 − 5x4, and f ′(1) = 5 gives the slope of the curve at (1, 0). The
y-value comes from evaluating f(1). The equation for the tangent line is y − 0 = 5(x− 1).

(12) f ′(x) = 2x − 2, and f ′(x) = 0 when 2x − 2 = 0 or x = 1, f ′(x) > 0 when
2x − 2 > 0 or x > 1, and f ′(x) < 0 when 2x − 2 < 0 or x < 1. In words, the curve has
positive slope for x > 1, negative slope for x < 1 and zero slope for x = 1.

(13) The (vertical) velocity of the ball t seconds after it is thrown is given by ds
dt

=
s′(t) = −32t + 32. The ball reaches its maximum height when its velocity changes from
positive to negative, i.e., when s′(t) = −32t + 32 = 0 or t = 1. The height of the ball at
t = 1 is s(1) = 22 feet.

(14) The (vertical) acceleration of the ball t seconds after it is thrown is given by
d2s
dt2

= s′(t) = −32 feet per second per second or feet per second squared. The velocity
loses a constant 32 feet per second upward every second.
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Solutions for Introduction to Polynomial Calculus

Section 4 Problems - Antiderivatives of Polynomials

Bob Palais

Calling the function in each problem f(x) and using the three antidifferentiation rules
corresponding to the previous three differentiation rules:

The antiderivative of f(x) = xn is
∫

f(x)dx = x
n+1

n+1
+ C.

If f(x) = u(x) + v(x) then
∫

f(x)dx =
∫

u(x)dx +
∫

v(x)dx.

If f(x) = c(u(x)) where c is a constant, then
∫

f(x)dx = c
∫

u(x)dx.

(1)
∫

f(x)dx = x2
− 3x + C. You should check this by taking its derivative!

(2)
∫

f(x)dx = x3
− 2x2 + 5x + C.

(3)
∫

f(x)dx = x
6

6
+ x

4

2
+ x + C.

(4)
∫

f(x)dx = x10
− 4x2 + C.

Find the general antiderivative then impose the condition to determine C:

(5) F (x) =
∫

f(x)dx = x
3

3
− 5x + C and F (0) = 2 says C = 2, so F (x) = x

3

3
− 5x + 2.

(6) F (x) =
∫

f(x)dx = 2x4
− x2 + C and F (1) = 4 says 2 − 1 + C = 4, so C = 3 and

F (x) = 2x4
− x2 + 3.

(7) F (x) =
∫

f(x)dx = x
4

2
+ C and F (1) = 1 says 1

2
+ C = 1, so C = 1

2
and

F (x) = x
4

2
+ 1

2
.

(8) F (x) =
∫

f(x)dx = x
4

4
−

x
2

2
+ C and F (2) = 1 says 4− 2 + C = 1, so C = −1 and

F (x) = x
4

4
−

x
2

2
− 1.

(9) The derivative of velocity is acceleration, and the acceleration of any body near
the earth’s surface under only the force of gravity is −32 feet per second squared. Since
the (vertical) velocity is then the antiderivative of the acceleration,

v(t) =

∫
a(t)dt =

∫
−32dt = −32t + C

feet per second. We are given that v(0) = 64 feet per second, so 0 + C = 64 and v(t) =
−32t+64 feet per second is the velocity after t seconds. The ball will achieve its maximum
height when its vertical velocity changes from positive to negative, i.e., when v(t) = −32t+
64 = 0, so when t = 2 seconds.

(10) The derivative of (vertical) displacement, or height, is velocity, and the velocity
of the ball is v(t) = −32t+64 from the previous problem. Since the (vertical) displacement
is then the antiderivative of the velocity,

s(t) =

∫
v(t)dt =

∫
−32t + 64dt = −16t2 + 64t + C

1



feet. We are given that s(0) = 6 feet, so 0 + 0 + C = 6 and s(t) = −16t2 + 64t + 6 feet
is the height of the ball after t seconds. Since the ball achieves its maximum height when
t = 2 seconds, the maximum height it achieves is s(2) = 70 feet.
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