## Notes on Limits

Setup: You have to find $\lim _{x \rightarrow c} f(x)$

1. If c is a finite number, first try plugging in c .

- If you get a finite number back, then you're done.
- If you get the $\frac{0}{0}$ case, then you need to simplify more to find the limit. Keep going until you can plug in c for x .
- If you get the $\frac{\text { finite number }}{0}$ case, then it will either (1) go to $\infty$, (2) go to $-\infty$, or (3) it will not exist (DNE). You need to check the right and left-hand limits.
- If the RH limit and the LH limit both go to $\infty$, then the limit also goes to $\infty$.
- If the RH limit and the LH limit both go to $-\infty$, then the limit also goes to $-\infty$.
- If the RH limit goes to $-\infty$ and the LH limit goes to $\infty$ (or the other way around), then the limit does not exist (DNE).

2. If c is $\pm \infty$ (and $f(x)$ is a rational function or at least has numerator and denominator that can be written as a collection of terms to powers), then

- If the highest degree of the numerator > highest degree of the denominator, then the limit goes to $\pm \infty$. (You have to analyze the particular problem to decide if it's positive or negative infinity.)
- If the highest degree of the numerator = highest degree of the denominator, then the limit is the quotient of the leading coefficients.
- If the high degree of the numerator < highest degree of the denominator, then the limit is zero.


## Asymptotes:

1. To find Vertical Asymptotes $(V A)==>$

Look for $x$-values that will make the function undefined (e.g. x-values that make the denominator zero). Let's say that $\mathrm{x}=\mathrm{b}$ makes function undefined.

- If $\lim _{x \rightarrow b} f(x)$ equals a finite number, then there is only a "hole" (a.k.a. removable discontinuity) at $\mathrm{x}=\mathrm{b}$.
- If $\lim _{x \rightarrow b} f(x)$ does not exist (or goes to $\pm \infty$ ), then $\mathrm{x}=\mathrm{b}$ is a VA.
* (A quick way to determine this is to try plugging in $x=b$ in the function. If it goes to $\frac{0}{0}$, then it's a "hole." If it goes to $\frac{\text { finite number }}{0}$, then it's a VA.)

A graph NEVER touches or crosses a vertical asymptote!!

## 2. To find Horizontal Asymptotes (HA)==>

The HA can be found by calculating $y=\lim _{x \rightarrow \pm \infty} f(x)$. If the limit goes to $\pm \infty$, then there is no HA.
*(If there is no HA and you have a rational function, you can always find the "slant asymptote" by doing long division.)

Remember that the HA just describes the behavior of the graph as $x$ gets really huge (either negatively or positively). A graph can cross and touch the horizontal/slant asymptotes as many times as it wants...but as $x$ gets huge, it will only approach the asymptote.

