Name \qquad Date \qquad
Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated, and in exact form (not approximated), unless otherwise stated. Place your answers in the designated space for each problem.

Potentially Useful Formulas

$$
\begin{gathered}
\frac{d(\tan (x))}{d x}=(\sec (x))^{2} \\
\frac{d(\cot (x))}{d x}=-(\csc (x))^{2} \\
\frac{d(\sec (x))}{d x}=\sec (x) \tan (x) \\
\frac{d(\csc (x))}{d x}=-\csc (x) \cot (x) \\
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
\end{gathered}
$$

1. (15 pts) Let $y=2 x^{3}-\sec (\pi x)+\sqrt{x}$. If x changes from 1 to 1.035 , approximately how much does y change? (You must use differentials to get the approximation.)

Answer 1: \qquad
2. (10 points each) Evaluate
(a) $\int\left(5 \mathrm{x}^{3}\left(x^{4}-1\right)^{-2 / 3}\right) d x$

Answer 2(a):
(b) $\int\left(3 \sqrt[3]{t}-\frac{4}{t^{3}}+5 \mathrm{t}^{2}-\cos t+2\right) d t$
3. (15 points) Solve the following differential equation.

$$
\frac{d y}{d x}=\frac{\left(x^{2}-\sqrt{x}\right)}{2 y^{3}} \text { such that } y=-1 \text { when } x=1
$$

4. (5 points each) For $f(x)=\frac{x^{2}-2 \mathrm{x}-2}{x-3}$

$$
\text { (given also } f^{\prime}(x)=\frac{x^{2}-6 \mathrm{x}+8}{(x-3)^{2}} \text { and } f^{\prime \prime}(x)=\frac{2}{(x-3)^{3}} \text {) }
$$

(a) Find the x-values of the vertical asymptote(s), if they exist.

> Vertical asymptote(s):
\qquad
(b) Fill in the sign line for $f^{\prime}(x)$

(c) Find all local minimum and maximum points, if they exist, or state that they DNE.

Local Max point(s): \qquad

Local Min point(s): \qquad
(d) Fill in the sign line for $f^{\prime \prime}(x)$

(e) Find all inflection points, if they exist, or state that they DNE.
\qquad
5. (10 points) For the function $f(x)=\frac{4 \mathrm{x}-1}{x-4}$ on the closed interval $[-1,3]$, decide whether or not the Mean Value Theorem for Derivatives applies. If it does, find all possible values of c. If not, then state the reason.

MVT applies: True or False (circle one)
If true, then $\mathrm{c}=$
If false, then why?
6. (7 points) Evaluate this integral. $\int \frac{(2 \mathrm{x}+3)^{2}}{\sqrt{x}} d x$
7. (15 points) Find the dimensions of the right circular cylinder of greatest volume that can be inscribed in a right circular cone, if the cone has a radius of 6 inches and height of 12 inches.
(Note: The volume of a cylinder is $V=\pi r^{2} h$; the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.)
8. (15 points) Evaluate the definite integral using the definition (the tedious way).

$$
\int_{0}^{2} 3 \mathrm{x}^{2} d x . \text { (Note: Here is the definition. } \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \text {) }
$$

$\Delta x=$ \qquad

$$
x_{i}=
$$

(Just fill in the formula here, and do the simplifying after this.)

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=
$$

$$
\int_{0}^{2} 3 \mathrm{x}^{2} d x=
$$

\qquad

