Name $\qquad$ Date $\qquad$
Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. For $y=3 \cos \left(5\left(x-\frac{\pi}{2}\right)\right)-1$, answer the following questions.
(a) (5 pts) What is the amplitude? $\qquad$
(b) ( 5 pts) What is the period? $\qquad$
(c) (5 pts) What is the vertical shift? $\qquad$ units
up or down (circle one)
(d) (5 pts) What is the horizontal shift? $\qquad$ units left or right (circle one)
(e) (10 pts) Fill in the table with the $y$-values corresponding to the given $x$-values. (Note: I want exact values here, with your work shown...so don't just plug these in on your calculator and give me an approximation.)

| $x$ | $y$ |
| :---: | :---: |
| $\frac{\pi}{2}$ |  |
| $\frac{\pi}{6}$ |  |
| $\frac{\pi}{4}$ |  |
| $\frac{11 \pi}{15}$ |  |

2. (15 pts) Find the limit, if it exists. (Show all work.)

$$
\lim _{x \rightarrow 0} \frac{\cos (2 x) \sin (4 x) \csc (5 x)}{\sec (3 x)}
$$

Answer 2:
3. ( 10 pts each) Find the indicated derivative of the given functions.
(a) $\quad D_{x}\left(\tan \left(4 \mathrm{x}^{2}+5 \mathrm{x}-1\right) \cos ^{2}(3 \mathrm{x})\right)$ (Do $\underline{\text { not }}$ bother to simplify!)
(Note: This is \#3 continued!)
(b) $\frac{d}{d x}\left(\frac{x^{4}-3 x^{2}+1}{x^{3}-\sqrt[4]{x}}\right)^{5} \quad$ (Do not bother to simplify!)

Answer 3(b):
(c) $f^{\prime}(1)$ if $f(x)=\left(2 \mathrm{x}-\frac{1}{x}\right)^{3}\left(4 \mathrm{x}^{3}-2\right)^{4}$
(Note: This is \#3 continued!)
(d) $\frac{d y}{d x}$ given $2 \mathrm{x}^{4} y+y^{3}=2 \mathrm{x}^{2}-6 \mathrm{x}$
(Solve for $\frac{d y}{d x}$, i.e. get it by itself, but don't bother simplifying any further.)

Answer 3(d): $\qquad$
(e) $\quad f^{\prime \prime \prime}(x)$ for $\quad f(x)=(3 \mathrm{x}-4)^{\frac{2}{5}}$
4. (15 points) Choose either A or B to do. You CANNOT get credit for both and we will not choose for you, if you decide to try both of them.

## Grade A or B (circle one)

A. A metal rod has the shape of a right circular cylinder. As it is being heated, its length is increasing at a rate of $0.005 \mathrm{~cm} / \mathrm{min}$ and its radius is increasing at 0.001 $\mathrm{cm} / \mathrm{min}$. At what rate is the volume changing when the rod has length 40 cm and radius 1.5 cm ?
B. A softball diamond has the shape of a square with sides 40 ft . long. If a player is running from second base to third base at a speed of $20 \mathrm{ft} / \mathrm{sec}$, at what rate is her distance from home plate changing when she is 30 ft from third base?
$\qquad$
$\qquad$

Extra Credit (7 pts) :
Show that the tangent lines to the curves $y^{2}=4 x^{3}$ and $2 x^{2}+3 y^{2}=14$ at $(1,2)$ are perpendicular to each other.

