
Programming in Maple

Dylan Zwick

Monday, June 23rd, 2008

Today we’re going to learn the basics of Maple programming on a
“need to know” basis. In other words, we’ll learn the bare bones basics
of Maple programming in a similar fashion to how we learned the bare
bones basics of programming in C++. However, we’ll be even more cur-
sory in our treatment than we were with C++, because you’ve now all had
some programming experience.

The goal is that by the end of the day you’ll have seen enough Maple
programs, and you’ll understand the concepts sufficiently, that you can
write a program that finds the GCD of two polynomials in the variable x. If
you finish this quickly and you want to go on (and you know a little about
recursion) you can then construct a program that finds a single generator
for the ideal generated by a set of polynomials in x.

Note - We know this can always be done with just one polynomial as the
ring of polynomials in one variable is a Euclidean domain, and is therefore
a principal ideal domain.

1 Creating Procedures in Maple

The basic format for creating a procedure in mapel is:

NAME := proc(variables) [local variables;]
statements;
end;
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This creates a procedure with the name of NAME. So, for example, here
is a procedure that takes a variable and returns that variable plus 1.

AddOne := proc(x)
x+1;
end;

If you enter this into Maple and then type in:

AddOne(2);

Maple will return 3. Sweet. However, if on the other hand you type in:

AddOne(x);

Maple will return x+1. Maple has built in functionality that makes it
much more flexible when it comes to the types of objects you’re using.
That’s one of the reasons we’re using Maple now instead of C++.

Now, just as with C++ the two most important commands we’ll have
are while loops and if statements. The if statement in Maple is similar to
the if statement in C++. Here is a procedure that illustrates the if state-
ment.

IsEven := proc(x)
if not type(x,numeric) then ERROR(‘Must Input a Number‘) fi ;
if irem(x,2) = 0 then true
else false
fi;
end;

We can see a few things by examining even this simple procedure.
First, we see that we signal the end of an “if” statement with a “fi”. Get
it? Also, we’ve introduced two new functions: type and irem. The first
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of these takes two arguments, the first is whatever variable you’re looking
at, and the second is a type of variable. The type function returns true if
the input to the first argument is of the type listed in the second argument,
and it returns false otherwise. The irem function returns the integer re-
mainder of the first argument upon division by the second. It’s basically
the mod operator from C++.

Now, as an example of a while loop, let’s write a procedure that divides
a number by 2 until it can’t do it any more. So, for example, running this
procedure on 16 would return 1, while running it on 20 would return 5.

Strip2 := proc(x) local p;
p := x;
while IsEven(p) do p := p/2 od;
p;
end;

Now, we note two things here. First, a “while” statement is followed by
whatever must be satisfied in order for it to proceed, and then followed by
a “do” statement which tells the procedure what to do. The do statements
ends with “od”. We also note two other things about this procedure. First,
we used our IsEven program in its implementation, which is fine. How-
ever, if we wrote this without writing IsEven first, Strip2 wouldn’t run.
Second, we created the local variable p. The reason we did this is because
if we had included the statement x := x/2 Maple would have complained.
It does not like it when you redefine an argument that is sent to the func-
tion.

2 Implementing Polynomial Division

First, type in the following procedure. See if you can reason out what it’s
doing, but if not don’t worry about it yet.

TERMDEGREE := proc(f)
if type(f,numeric) then 0
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elif type(f,name) then 1
elif type(f,‘ * ‘) then TERMDEGREE(op(2,f))
elif type(f,‘ˆ‘) then op(2,f)
else ERROR(‘Not a recognized monomial‘)
fi;
end;

This procedure will give the degree of a term in a polynomial. So, for
example, TERMDEGREE(4x3) will return 3.

Now, we’re going to use this to create a function that returns the lead-
ing term of a polynomial. Such a program is:

LT := proc(f) local i; i:= 1;
if not type(f,polynom) then ERROR(‘Wrong type of input.‘) f i;
if type(f,‘+‘) then while TERMDEGREE(op(i,f)) <> degree(f ,x)
do i := i+1 od;
op(i,f);
else f;
fi;
end;

Now, it is a good idea to deconstruct this and figure out what’s going
on. First, the procedure uses the “op” function. Any object in Maple is
treated as a directed acyclic graph. It’s not important that you know what
that is, it’s just important that you understand that the op function is used
to pick objects apart. So, for example, if f = x2 + 3x − 2 Maple stores
this as the sum of three other objects. So op(2, f) would return the second
term in this sum, namely, 3x. Now, 3x itself is stored as the product of
two other objects. So, the command op(1, 3x) would return 3, and you can
nest these to get op(1, op(2, f)), which would again evaluate to 3. To find
out the number of operands an object has use the command nops(f). In
our example nops(f) = 3. Second, we used the built in Maple command
“degree”. The “degree” function takes as its input a polynomial and a
variable, and it returns the degree of that variable in the polynomial. The
reason we have to go through all this trouble to write the leading term
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command (as compared to just using, for example, op(1, f)) is that we want
to not have to worry about the order in which the terms of the polynomial
are presented. We want the leading term of x2 + 2x − 1 to evaluate to the
same thing as the leading term of 2x + x2

− 1. Which, of course, it should.
Finally, here is a procedure that takes in two polynomials, g, f , as input

and writes them as:

f = qg + r

where q and r are other polynomials and deg(r) < deg(f).

POLYDIV := proc(g,f) local q,r;
q := 0;
r := f;
while r <> 0 and divide(LT(r),LT(g))
do
q := collect(q + LT(r)/LT(g),x);
r := collect(r - (LT(r)/LT(g)) * g,x);
od;
[q,r];
end;

Three things about this procedure. We note first that it uses the “di-
vide” function. This is a function built into Maple that determines if a
given polynomial divides another polynomial. Second, the collect com-
mand makes sure that the polynomial is simplified. So, for example, x(x4

−

2) evaluates to x5
− 2x. Finally, the output of the procedure is a list. It is a

list of two elements; namely, the polynomials q and r. If we wanted to sim-
ply return the remainder, for example, we would write POLY DIV (g, f)[2],
which would return the second element in the list.

3 Now It’s Your Turn

OK, using what we’ve learned so far and the functions that we’ve written
you now should be able to write a procedure that takes as its input two
polynomials, f and g, and returns their greatest commond divisor. Write a
procedure that does this, and call it POLYGCD. If you finish this and you
want to try something else, write a procedure called POLYPID that takes
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as its input an arbitrary list of polynomials and returns a single polynomial
that generates the ideal generated by all the polynomials in the list. So, for
example, you should get the following relations:

POLYGCD(xˆ4-1,xˆ6-1) = xˆ{2}-1

and

POLYPID([xˆ3-3 * x+2,xˆ4-1,xˆ{6}-1]) = x-1.

Note that for the last procedure it wouldn’t necessarily have to return
x − 1. Any non-zero scalar multiple of x − 1 would do just as well.

Section 1.5 of the textbook should have the necessary algorithms for
doing both of these in pseudocode, although to do POLYPID you have to
be a little comfortable with the concept of a recursive algorithm.
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