
Programming - The Very Basics

Dylan Zwick

Tuesday, June 17th, 2008

It is not assumed that you have a programming background for this
class, although it is assumed that you have enough of a mathematical
background that picking up the basic concepts of computer programs and
algorithms will not be too difficult.

I just want to stress at the outset of this talk and this class that this is
most definitely not a class on computer programming or software devel-
opment. It is a math class designed to teach you some algebraic geometry,
and some of the computational theory behind it. As a result, I plan to teach
you just the computer basics that you need to understand in order to im-
plement the algorithms discussed in the book. It is hoped that we should
be able to get these basics under our belt quickly enough that we can move
on to programming the type of mathematics we’ve been discussing in class
very soon. Anything else you need, we’ll learn on the way.

That being said, please take the time to play around with this stuff and
definitely ask me any questions that you have. You want to have this basic
stuff down.

1 The Basic Concepts

A computer program is a set of text that a computer reads and implements.
The program is usually written by a person in a computer language (we’ll
be using the language C++) and the computer will then take the program
and translate it into a language that the computer understands.

1

As such, there are two fundamental and very different requirements
for a working computer program. The first is that the computer must un-
derstand what the program is telling it to do. In computer jargon, this
means the program must compile. A program compiling means that the
computer has read the program text, and has made sense of it. If a pro-
gram does not make sense to a computer, it will spit out a bunch of errors
when you try to compile the program, and the computer will not be able
to run the program at all until these errors are addressed.

The second requirement is that what you’ve told the computer to do is
actually what you want the computer to do. This is much more difficult
than it sounds. In fact, this is frequently the more difficult of the two re-
quirements. For example, there’s an old joke among computer nerds about
the programmer who used a full bottle of shampoo in the shower. The
problem was, he read the directions, and they said “wash, rinse, repeat”.
He continued to do this until he ran out of shampoo! This is a situation in
which the programmer understood what the shampoo bottle was telling
him to do, but what the shampoo bottle told him to do and what he was
suppose to do were two very different things.

Today, we’re going to play around with some very simple programs
that illustrate some of the basic concepts of computer programming: the
program itself, input and output, loops, and decisions. These basic con-
cepts will be illustrated with four very simple programs, and then at the
end you’ll be asked to implement a more complicated program that uti-
lizes some of the concepts you’ll learn today.

2 Creating the Program

Log into a computer and open up a terminal. Create a directory for the
REU using the mkdir command. So, for example, you could create a di-
rectory called “Serre” by typing:

mkdir Serre

To move into a directory, you use the cd command. So, to move into
the newly created directory you wold type:

2

cd Serre

Pleae create a directory for this class, and then inside that create a direc-
tory for what we’re going to be doing today. Then, move to the directory
for today.

Once that’s done create another directory called “HelloWorld” and move
there. Once you’re in this directory type:

emacs hello.cpp &

This opens up the text editor emacs and within emacs creates and
opens the file hello.cpp. The prefix .cpp tells emacs that this will be a
C++ program file, and emacs adjust accordingly. The & at the end tells the
computer to run emacs in the background, allowing us to do other things
with the terminal at the same time if we so desire.

In emacs, type in the following program:

#include <iostream>

int main()
{
std::cout << "Hello World\n";
return (0);

}

Once you have done this type the command:

g++ -g -Wall -ohello hello.cpp

This tells the computer to compile the program. The -g enables debug-
ging, the -wall turns on all warnings, the -ohello tells it to create an exe-
cutable file named hello, and hello.cpp specifies which file to use as the
sourcecode. Once this is done, assuming you entered the text correctly,
there should be another file in the directory named “hello”. Just type:

hello

to run the program. Hello World! If you’ve never programmed before,
congratulations! You’ve just written your first program!

3

3 Output and While Loops

I’ve held your hand so far, but I’m not going to be nearly as detailed from
here out. If you have any questions, please ask. The next thing we’re going
to be learning are the basic input and output commands. Please create
another program directory called “Count” and create a program file with
this text:

/***********************
* count.cpp *
* --------- *
* This is a program *
* that counts from 1 *
* to 100 and demon- *
* strates the use of *
* the while loop. *
***********************/

#include <iostream>

int main(void)
{

int i = 0;

std::cout <<"I’m a super duper counter. Check this out: ";

while(i <= 100)
{
std::cout << i << " ";
i++;

}

std::cout <<"\n I’m so awesome!\n"; \\Man, this program is vain!

return(0);

4

}

Play around with this program for a few minutes and read through it
so that you understand what it’s doing. The basic commands for input and
output in C++ are cin and cout. These are both pretty cool, and somewhat
complicated, commands and we’re not going to be learning everything
about them. Just read through and make sure you understand what the
program is doing, and how we’re using cout here. We’ll use cin in the next
sample program.

Also, there’s something very important in this program that wasn’t in
the last program. Comments! There are two ways of leaving comments
in a program. You can type two forward slashes and then everything on
the same line that comes after the two forward slashes is ignored by the
compiler. Or you can type a forward slash and then a star. This indicates
a much longer comment, and the compiler will ignore everything until it
sees a star and then a forward slash. The longer comment is illustrated
above, along with a shorter comment in the middle of the program.

4 Input

Frequently in computer programs you want a computer program to do
something many times, and the number of times may not be predeter-
mined, but may depend upon other data that can change from run to run.
This is where loops come in. A loop is something that a computer does
over and over again until some predetermined condition is achieved. We
saw an example of this in the last program, where an action was performed
over and over again until a counter reached 100. This final value of 100
was set by the program itself, not the user, but it was still an example of
a while loop. Be careful with these, because it’s easy to write a loop that
never ends! I’ve written a program to illustrate user input and the while
loop called “CountTo”. Type it in and check it out:

5

#include <iostream>

int main(void)
{

int max;
int i = 0;

std::cout <<"I’m a super duper counter. I can count real high. To what

std::cin >> max;

std::cout <<"OK, here I go ";

while(i <= max)
{
std::cout << i << " ";
i++;

}

std::cout <<"\n I’m so awesome!\n";

return(0);
}

5 Choices

The next and last thing that we’re going to look at is how to tell a computer
program to do one thing if a given condition is satisfied, and another if
another conditions is satisfied. This along with loops are the two things a
computer program must be able to do, and that’s pretty much it! Anything
else you want a computer to do you can pretty much accomplish by using
choices and loops. Anyways, here’s an example of an “if... else” statement
in a program. Check it out, run it, and make sure you understand it. If
you have any questions, please ask.

6

#include <iostream>

int main(void)
{

int first, second;

std::cout <<"Not only can I count, I know a lot about the ordering of

std::cout <<"Please enter the first number: ";
std::cin >> first;

std::cout <<"Please enter the second number: ";
std::cin >> second;

if(first > second)
{
std::cout <<"\nThe first number you entered, " << first << ", is

}
else if(second > first)

{
std::cout <<"\nThe second number you entered, " << second << ",

}
else

{
std::cout <<"\nYou entered the number " << first << " twice, silly!\n";

}

return(0);
}

6 Putting it Together

Finally, I want you to write a computer program on your own. Create a
new directory, open up a .cpp file, and write a program that asks the user

7

to input two integers, and then finds the greatest common divisor of those
two integers. The greatest common divisor can be found using an ancient
(in some sense, the first) algorithm called the Euclidean algorithm.

The basic idea behind the Euclidean algorithm is that you start with
two numbers: a, b. You divide one number by the other and you get a
remainder. You then repeat the process in the way outlined below:

a = q0b + r0

b = q1r0 + r1

r0 = q2r1 + r2

r1 = q3r2 + r3

...
r
n−2 = q

n
r
n−1 + r

n

r
n−1 = q

n+1rn

where r
n

is the last nonzero remainder. This r
n

is the g.c.d. of the num-
ber a and b. Try to write a computer program on your own that imple-
ments this algorithm, and play around with it for a few minutes to make
sure it works right. Once you’ve got it working, congratulations! Euclid
would have been so proud.

8

