Name \qquad Date \qquad
Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (10 points) Determine whether $\boldsymbol{F}(x, y)=\left(-e^{-x} \ln y\right) \boldsymbol{i}+\left(e^{-x} y^{-1}\right) \boldsymbol{j}$ is conservative. If so, find f such that $\boldsymbol{F}=\nabla f$. If not, state that \boldsymbol{F} is not conservative.

If conservative, $f=$ \qquad
2. (10 points) Show that the line integral is independent of path and then evaluate it.

$$
\int_{(0,0,0)}^{(\pi, \pi, 0)}(\cos x+2 \mathrm{yz}) d x+(\sin y+2 \mathrm{xz}) d y+(z+2 \mathrm{xy}) d z
$$

Prove independence of path:

Evaluate integral:
3. (10 points) Evaluate the line integral $\int_{C} x z d x+(y+z) d y+x d z$ where C is the curve $x=e^{t}, y=e^{-t}, z=e^{2 t}$ and \dagger goes from 0 to 1 .

Answer: \qquad
4. (10 points) (True or False)
T or F (circle one) There are 8 possible orders of integration for a triple integral.
T or F (circle one) The cross product of two unit vectors is another unit vector.
T or F (circle one) $2+2=4$

