Name \qquad Date \qquad
Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (10 points each) Set up the triple integral (do not evaluate!!!) to find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=16$, outside the cone $z=\sqrt{x^{2}+y^{2}}$, and above the $x y$-plane. (Use spherical coordinates)

Answer: \qquad
2. (10 points) Find $\nabla \cdot \boldsymbol{F}(\operatorname{div} \boldsymbol{F})$ and $\nabla \times \boldsymbol{F} \quad(\operatorname{curl} \boldsymbol{F})$ given $\boldsymbol{F}=3 \mathrm{xy} \boldsymbol{i}-2 \mathrm{x}^{2} \boldsymbol{j}+y z^{3} \boldsymbol{k}$.

$$
\nabla \cdot \boldsymbol{F}=
$$

\qquad
$\nabla \times \boldsymbol{F}=$ \qquad
3. (10 points) Evaluate $\int_{1}^{2} \int_{1}^{z} \int_{0}^{\sqrt{\frac{x}{z}}} 12 \mathrm{xyz} d y d x d z$.

Answer:
4. (10 points) Set up the triple integral (do not evaluate!!!) to find the volume of the solid in the first octant bounded by $y=4 \mathrm{x}^{2}$ and $3 \mathrm{y}+4 \mathrm{z}=12$.

