Math2210 Midterm 1

Summer, 2008
Dylan Zwick
Name \qquad Date \qquad
Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. For $x=2 \mathrm{t}^{2}+1$ and $y=4 \mathrm{t}-5$ such that $-1 \leq t \leq 1$, do the following:
(a) (10 pts) Eliminate the parameter to obtain the corresponding Cartesian equation.

Answer 1(a):
(b) (10 pts) Graph the curve.

(c) (5 pts) Indicate if the curve is simple and/or closed.

Simple: T or F (circle one)
Closed: T or F (circle one)
2. (10 pts) Find the length of the curve given by $x=\cos t$ and $y=\ln (\sec t+\tan t)-\sin t$ for $0 \leq t \leq \frac{\pi}{4}$.

Answer 2:
3. (15 pts) For position vector given by $\boldsymbol{r}(t)=e^{t} \boldsymbol{i}+e^{-t} \boldsymbol{j}+2 \mathrm{t} \boldsymbol{k}$, find the velocity and acceleration vectors and the speed at $t=\ln 2$.

$$
\begin{aligned}
& \boldsymbol{v}(t)= \\
& \boldsymbol{a}(t)= \\
&
\end{aligned}
$$

speed at $t=\ln 2=$ \qquad
4. (10 pts) Find the limit, if it exists. $\quad \lim _{t \rightarrow 0}\left[\frac{2 \mathrm{t} \sin t}{t^{2}} \boldsymbol{i}-\frac{4 \mathrm{t}^{3}}{t^{2}-t} \boldsymbol{j}+\frac{\tan t}{\sin t} \boldsymbol{k}\right]$

Answer (4) : \qquad
5. (10 pts) Find the equation of the sphere that has the line segment joining $(-1,4,3)$ and $(3,0,5)$ as a diameter.

$$
\text { Radius }=\ldots \text { units }
$$

center =
\qquad

Eqn of sphere: \qquad
6. (10 pts each) Let $\boldsymbol{a}=\langle 2,-1,1\rangle, \boldsymbol{b}=\langle-3,-1,4\rangle$ and $\boldsymbol{c}=5 \boldsymbol{i}+2 \boldsymbol{j}$. Find each of the following.
(a) $2 \boldsymbol{a}-3 \boldsymbol{c}$
(b) $\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})$

$$
2 a-3 c=
$$

\qquad

$$
\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})=
$$

\qquad
(c) $\boldsymbol{b} \cdot \boldsymbol{c}-|\boldsymbol{b}|$

$$
\boldsymbol{b} \cdot \boldsymbol{c}-|\boldsymbol{b}|=
$$

(Note: This is \# 6 continued.) $\boldsymbol{a}=\langle 2,-1,1\rangle, \boldsymbol{b}=\langle-3,-1,4\rangle$ and $\boldsymbol{c}=5 \boldsymbol{i}+2 \boldsymbol{j}$ (d) $\hat{\boldsymbol{c}}$ (the unit vector)

$$
\hat{\boldsymbol{c}}=
$$

(e) $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})$
(f) $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})$

$$
\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=
$$

\qquad

$$
\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=
$$

7. (10 pts each) For $\boldsymbol{a}=\boldsymbol{i}-3 \boldsymbol{j}+4 \boldsymbol{k}$ and $\boldsymbol{b}=2 \boldsymbol{i}-\boldsymbol{k}$, find each of the following: (a) Direction cosines for \boldsymbol{a}.

$$
\cos \alpha=
$$

\qquad

$$
\cos \beta=
$$

\qquad
$\cos \gamma=$
(b) The angle θ between \boldsymbol{a} and \boldsymbol{b}. (Just write a simplified expression. If you don't have a calculator just write the numerical formula for the angle.)

$$
\theta=
$$

(c) Find the projection of \boldsymbol{b} onto \boldsymbol{a}.
\qquad
8. (10 pts each) For the planes given by $3 x+y+z=7$ and $5 x+3 z=13$, answer the following questions.
(a) Find the line of intersection between the planes and write that line in parametric equations.

Line: \qquad
(b) Find the equation of the plane that is perpendicular to the line of intersection and goes through the point $(2,1,3)$.
\qquad

Extra Credit: (9 pts)

A luxury cruiseliner is traveling due west at only 8 miles per hour. A woman on the ship is running across the ship, heading due north, at 6 miles per hour. What are the magnitude and direction of her velocity relative to the surface of the water? (If you don't have a calculator, just give the angle in simplified form.)
velocity magnitude: \qquad
velocity direction: \qquad

