Math2210 Midterm 1	Summer, 2008	Dylan Zwick
Name	_ Date	

Instructions: Please show all of your work as partial credit will be given where appropriate, **and** there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. For $x=2t^2+1$ and y=4t-5 such that $-1 \le t \le 1$, do the following:

(a) (10 pts) Eliminate the parameter to obtain the corresponding Cartesian equation.

Answer 1(a): _____

(b) (10 pts) Graph the curve.

1	
1	
1	
L	 1

(c) (5 pts) Indicate if the curve is simple and/or closed.

Simple: T or F (circle one)

Closed: T or F (circle one)

2. (10 pts) Find the length of the curve given by $x = \cos t$ and $y = \ln(\sec t + \tan t) - \sin t$ for $0 \le t \le \frac{\pi}{4}$.

Answer 2: ______ 3. (15 pts) For position vector given by $\mathbf{r}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j} + 2t \mathbf{k}$, find the velocity and acceleration vectors and the speed at $t = \ln 2$.

- $\boldsymbol{v}(t) =$ _____
- $\boldsymbol{a}(t) =$ _____

speed at $t = \ln 2 =$

4. (10 pts) Find the limit, if it exists. $\lim_{t \to 0} \left| \frac{2t \sin t}{t^2} i - \frac{4}{t^2} \right|$

 $\lim_{t\to 0} \left[\frac{2t\sin t}{t^2} i - \frac{4t^3}{t^2 - t} j + \frac{\tan t}{\sin t} k \right]$

Answer (4) :_____

5. (10 pts) Find the equation of the sphere that has the line segment joining (-1, 4, 3) and (3, 0, 5) as a diameter.

Radius = _____ units

center = _____

Eqn of sphere:

6. (10 pts each) Let $a = \langle 2, -1, 1 \rangle$, $b = \langle -3, -1, 4 \rangle$ and c = 5i + 2j. Find each of the following. (a) 2a - 3c

(b) $\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})$

2a - 3c =_____

(c) $\boldsymbol{b} \cdot \boldsymbol{c} - |\boldsymbol{b}|$

 $\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c}) =$

 $b \cdot c - |b| =$ _____

(Note: This is # 6 continued.)	$a = \langle 2, -1, 1 \rangle$,	$b = \langle -3, -1, 4 \rangle$	and	c = 5i + 2j
(d) $\hat{m{c}}$ (the unit vector)				

(e) $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c})$

 $a \times (b \times c) =$

c =_____

(f) $\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})$

7. (10 pts each) For a=i-3j+4k and b=2i-k, find each of the following: (a) Direction cosines for a.

 $\cos \alpha =$

 $\cos\beta =$

 $\cos \gamma =$

(b) The angle θ between a and b. (Just write a simplified expression. If you don't have a calculator just write the numerical formula for the angle.)

(c) Find the projection of **b** onto **a**.

Projection of b onto a = _____

8. (10 pts each) For the planes given by 3x + y + z = 7 and 5x + 3z = 13, answer the following questions.

(a) Find the line of intersection between the planes and write that line in parametric equations.

Line: _____

(b) Find the equation of the plane that is perpendicular to the line of intersection and goes through the point (2, 1, 3).

Equation of plane: _____

Extra Credit: (9 pts)

A luxury cruiseliner is traveling due west at only 8 miles per hour. A woman on the ship is running across the ship, heading due north, at 6 miles per hour. What are the magnitude and direction of her velocity relative to the surface of the water? (If you don't have a calculator, just give the angle in simplified form.)

velocity magnitude: _____

velocity direction: