Name _____ Date ____

<u>Instructions</u>: Please show all of your work as partial credit will be given where appropriate, **and** there may be no credit given for problems where there is no work shown. All answers should be completely simplified, unless otherwise stated.

1. (15 points) For position vector given by $r(t)=(3t^3-5t)\boldsymbol{i}+(2t^2+7)\boldsymbol{j}$, find the velocity and acceleration vectors and the speed at $t=\frac{1}{2}$.

 $\mathbf{v}(t) = \underline{}$

a(t) =

speed at $t=\frac{1}{2}=$

- 2. (20 points) Let $\pmb{a}=\langle 1,-3\rangle$, $\pmb{b}=\langle 2,6\rangle$ and $\pmb{c}=\langle -2,5\rangle$. Find each of the following.
 - (a) 2a-3c

(b) $a \cdot (b+c)$

$$2a-3c = \underline{\hspace{1cm}}$$

(c) projection of $\ a$ onto $\ b$

projection of
$$a$$
 onto b = _____

(d) \hat{a} (the unit vector)

$$\hat{i}$$
 = _____

3. For the points A(-1, 2, 3), B(4, 1, 5) and C(1, 1, -1)			
(a) (10 points) Write the equation of the plane through points A, B and C.			
plane normal vector =			
plane hormal vector -			
Eqn of plane:			
(b) (10 points) Write a set of parametric equations for the line through point B and perpendicular to the plane in part (a).			
Line:			

4. (15 points) Find the directional derivative of $f(x,y,z)=x^3y-y^2z^2$ at p=(-1,3,-2) in the direction of a=i-2k.

Answer 4: _____

5.	(20 points)	For the surface	$F(x, y, z) = 4x^2 - 3xy + 5x^2 - 3xy + 5x^$	$+2v^2+4z-z^2=4$	1
Ο.	(20 poii113)	1 Of THE SOFIACE	I'(x, y, z) - 4x - 3xy	-2y -42-2	t

(a) Find the equation of the tangent plane at the point (1, 1, 1).

Answer 5(a): ______ (b) Find a point on the surface where the tangent plane is parallel to the plane 14x-11y+4z=19 .

Answer 5(b):_____

6. (15 points) Find all critical points of the function $f(x,y) = e^{x^2 + y^2 - 4y}$.

Answer 6: _____

7. (15 points) For the solid inside $x^2 + y^2 = 9$ bounded above by the sphere $x^2 + y^2 + z^2 = 16$ and below by the xy-plane, do the following.
(a) Set up the volume integral in Cartesian coordinates.
Answer 7(a):
(b) Rewrite the integral using cylindrical coordinates.
A
Answer 7(b):(c) Evaluate the volume (using the integral of your choice).
Approx 7(a):

8. (20 points) Given $F(x,y,z)=5x^2yz^2\mathbf{i}-2yx^3\mathbf{j}+y^4z^3\mathbf{k}$, calculate the following.

(a) div
$$m{F}$$

div
$$F =$$

(b) curl
$${m F}$$

curl
$$F=$$

(c)
$$\nabla(
abla\cdot m{F})$$

$$\nabla(\nabla \cdot \boldsymbol{F}) \ = \underline{\hspace{2cm}}$$
 (d)
$$\nabla \cdot (\nabla \times \boldsymbol{F})$$

9. (15 points) Evaluate the line integral $\int_C (x^2+y^2) ds$ given C is the path given by $x=e^t \sin t$, $y=e^t \cos t$ and $0 \le t \le 3$.

Answer 9: _____

10. (15 points) Determine whether $F(x,y,z) = (y^2 \cos x + z^3) \mathbf{i} + (2y \sin x - 4) \mathbf{j} + (3xz^2 + 2) \mathbf{k}$ is conservative. If so, find f such that $F = \nabla f$. If not, state that F is not conservative.

Conservative: True or False (circle one)

If conservative, f =

Use Green's Theorem to evaluate y of the triangle with vertices (1, 0)	

Answer 11: _____

$$\int_{0}^{\frac{\pi}{4}} \int_{\cos(4z)}^{0} \int_{0}^{4yz} \cos\left(\frac{x}{y}\right) dx \, dy \, dz \quad .$$

Extra Credit: (10 points) Prove the identity:
$$\int\limits_0^x \int\limits_0^v \int\limits_0^u f(t) dt du dv = (1/2) \int\limits_0^x (x-t)^2 f(t) dt$$

14	Answer:

Extra Credit 2:

(5 points) What is 5+2?