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Name: Solutions

1. (10 points)

Calculate the following double integrals.

(a) (3 points)
∫ 4

−1

∫ 2

1
(x + y2)dydx

Solution

∫ 4

−1

∫ 2

1
(x + y2)dydx =

∫ 4

−1
xy +

y3

3
|21dx

=
∫ 4

−1
x +

7

3
dx =

x2

2
+

7x

3
|4
−1 = (8 +

28

3
) − (

1

2
− 7

3
) =

115

6

(b) (3 points)
∫ 1

1
2

∫ 2x

0
cos (πx2)dydx

Solution

∫ 1

1
2

∫ 2x

0
cos (πx2)dydx =

∫ 1

1
2

y cos (πx2)|2x
0 =

∫ 1

1
2

2x cos (πx2)dx

=
sin (πx2)

π
|11
2

=
sin (π) − sin (π

4
)

π
= − 1√

2π

1



(c) (4 points)
∫ π

0

∫ 1−cos θ

0
r sin θdrdθ

Solution

∫ π

0

∫ 1−cos θ

0
r sin θdrdθ =

∫ π

0

r2 sin θ

2
|1−cosθ
0 dθ =

∫ π

0

(1 − cos θ)2 sin θ

2
dθ

=
(1 − cos θ)3

6
|π0 =

23

6
− 03

6
=

8

6
=

4

3

Note - In the second integral we used the substitution u = x2, and for
the third integral we used the substitution u = 1 − cos θ.
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2. (10 points)

Evaluate the given integrals using either cartesian or polar integra-
tion, whichever works best for the given problem, and sketch the
domain of integration. (Hint: Make the sketch first.)

(a) (5 points)
∫ ∫

S
(x2 − xy)dA;

S is the region between y = x and y = 3x − x2.

Solution

First we calculate the limits on the x values, which will be the x

values where the two curves intersect. These are:

x = 3x − x2 → 2x = x2 → x = {0, 2}

So, our integral will be:

∫ 2

0

∫ 3x−x2

x
(x2 − xy)dydx

Which, when we evaluate it we get:

∫ 2

0

∫ 3x−x2

x
(x2 − xy)dydx =

∫ 2

0
x2y − xy2

2
|3x−x3

x dx

=
∫ 2

0
(x2(3x − x2) − x(3x − x2)2

2
) − (x3 − x3

2
)dx =

∫ 2

0
(2x4 − x5

2
− 2x3)dx =

2x5

5
− x6

12
− x4

2
|20

=
64

5
− 64

12
− 8 =

192 − 80 − 120

15
= − 8

15

3



(b) (5 points)
∫ 1

0

∫

√
1−y2

0
sin (x2 + y2)dxdy

Solution

As the sketch of the domain above indicates, we’re going to want to
integrate this in polar coordinates. So, switching to polar coordinates
are integral becomes:

∫ π

2

0

∫ 1

0
sin (r2)rdrdθ

We can evaluate this if we make the substitution u = r2 and so du =
2rdr. Under this substitution the integral becomes:

∫ π

2

0

∫ 1

0

sin u

2
dudθ =

∫ π

2

0
−cos u

2
|10dθ

∫ π

2

0

1 − cos (1)

2
dθ =

1 − cos (1)

2
(
π

2
− 0) = π(

1 − cos (1)

4
)
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3. (10 points)

For the solid bounded by the cylinder x2 + y2 = 9 and the planes
z = 0 and z = 4 calculate:

(a) (3 points)

The volume of the solid.

Solution

We can figure this out using either high school geometry or we
can take the triple integral:

∫ 2π

0

∫ 3

0

∫ 4

0
rdzdrdθ =

∫ 2π

0

∫ 3

0
4rdrdθ =

∫ 2π

0
2r2|30dθ

=
∫ 2π

0
18dθ = 36π

(b) (3 points)

The mass of the solid assuming the density is given by:

ρ(x, y, z) = 2(x2 + y2 + z2)

Solution

The limits of integration here will be exactly the same. The only
different here is that our integrand will be 2(x2 + y2 + z2) =
2(r2 + z2) instead of 1. Our integral will therefore be:

∫ 2π

0

∫ 3

0

∫ 4

0
2(r2 + z2)rdzdrdθ =

∫ 2π

0

∫ 3

0
(2zr3 +

2z3r

3
)|40drdθ

=
∫ 2π

0

∫ 3

0
(8r3 +

128r

3
)drdθ
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∫ 2π

0
(
8r4

4
+

64r2

3
)|30dθ =

∫ 2π

0
(162 + 192)dθ = 2π(354) = 708π

(c) (4 points)

The center of mass of the solid with the above density function.
(Note: You should only have to calculate one of the three center
of mass coordinates here. The other two should be obvious, but
you should say why they’re obvious.)

Solution

Given both the solid and the density function are symmetric
around the z-axis, both the x and y coordinates of the center of
mass will be 0, as the center of mass will have to be on the z-axis.

The z-coordinate of the center of mass can be calculated by cal-
culating the moment Mxy of the solid:

Mxy =
∫ 2π

0

∫ 3

0

∫ 4

0
2(r2 + z2)zrdzdrdθ =

∫ 2π

0

∫ 3

0
(z2r3 +

z4r

2
)drdθ

=
∫ 2π

0

∫ 3

0
(
z2r4

4
+

z4r2

4
)|40drdθ =

∫ 2π

0

∫ 3

0
(4r4 + 64r2)drdθ =

∫ 2π

0
(4(81) + 64(9))dθ = 2π(900) = 1800π

And so therefore the z-coordinate of the center of mass will be:

z =
1800π

708π
≈ 2.54

And so the center of mass will be at: (0, 0, 2.54).
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4. (10 points)

Calculate the following quantities:

(a) (5 points)

The surface area of the part of the surface z =
x2

4
+ 4 that is cut

off by the planes x = 0, x = 1, y = 0, and y = 2.

Solution

The partial derivatives of this function z = f(x, y) with respect
to x and y are, respectively:

∂z

∂x
=

x

2
and

∂z

∂y
= 0

Therefore, the surface area of this region will be:

∫ 1

0

∫ 2

0

√

1 + (
x

2
)2 + 02dydx =

∫ 1

0
2

√

1 +
x2

4
=

∫ 1

0

√
4 + x2dx

=

√
5

2
+ 2 ln

1 +
√

5

2

Note - I’m very sorry about this problem. Its solution required
the use of a table of integrals, or the knowledge of how to do a
very difficult integral. I wouldn’t have been able to do it with-
out a table of integrals. I should have given you the integral on
the exam. When I did this problem before I made a mistake and
thought it was easier than it is. So, I’m giving everybody who
attempted this problem and got it down to the hard integral,
but was unable to do it, full credit.
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(b) (5 points)

The area in the first quadrant between the curves defined by the
equations x2 + y2 = 36 and x2 − 6x + y2 = 0. (Note - You should
do this problem as a double integral in polar coordinates. Any
other argument will not receive full credit.)

Solution

This is a webworks problem and a problem I did in class. If you
graph the region out you get the area pictured below:

If we represent these two curves in polar coordinates we find that
the first has the polar equation:

r = 6

While the second equation has the form:

r2 − 6r cos θ = 0 → r = 6 cos θ

Given we’re dealing with all the points in the first quadrant our inte-

gral will go from 0 ≤ θ ≤ π

2
, and so our double integral for this area

will be:

∫ π

2

0

∫ 6

6 cos θ
rdrdθ =

∫ π

2

0

r2

2
|66 cos θdθ =

∫ π

2

0
(18 − 18 cos2 θ)dθ

=
∫ π

2

0
18 sin2 θdθ =

∫ π

2

0
9(1 − cos (2θ))dθ = (9θ − 9 sin (2θ)

2
)|

π

2
0 =

9π

2

Note that this also could have been deduced by looking at the picture
and using a clever application of high school geometry. However, as
the problem asks you to figure out the area using a polar integral,
such an approach would not have received full credit.
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5. (10 points)

Evaluate the integral
∫

∞

−∞

e−
(x−µ)2

2σ2 dx.

(Note - You must provide a formal evaluation of any integral. For
full credit you can’t just quote a result from the textbook or from
lecture, you must rederive the result. Also, your final answer may
be in terms of µ and σ.)

Solution

If we begin with the substitution u =
(x − µ)√

2σ
then we have du =

dx√
2σ

and the integral becomes:

∫

∞

−∞

√
2σe−u2

du =
√

2σ
∫

∞

−∞

e−u2

du

Now, this integral is tricky, but we went over it in class, in the review
session, and it’s covered in the textbook. So, here’s how it’s done.
First, we take a look at the double integral:

∫

∞

−∞

∫

∞

−∞

e−(x2+y2)dxdy =
∫

∞

−∞

e−x2

dx

∫

∞

−∞

e−y2

dy = [
∫

∞

−∞

e−x2

dx]2

So, if we can calculate the double integral above, its square root will
be the integral for which we’re searching. The trick here is to convert
the above double integral into a polar integral over the entire plane:

∫ 2π

0

∫

∞

0
e−r2

rdrdθ =
∫ 2π

0

∫

∞

0

e−u

2
dudθ

where here we used the substitution u = r2 and so du = 2rdr
∫ 2π

0
−e−u

2
|∞0 dudθ =

∫ 2π

0
(−0 − (−1

2
))dθ = 2π(

1

2
) = π
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So, the double integral above is equal to π, and therefore the single
integral for which we’re looking is equal to

√
π. Using this we get:

√
2σ

∫

∞

−∞
e−u2

du =
√

2πσ
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