Math 2210 - Quiz 2
 University of Utah

Summer 2007

Name:

1. (10 points)

Calculate the following double integrals.
(a) (3 points)

$$
\int_{-1}^{4} \int_{1}^{2}\left(x+y^{2}\right) d y d x
$$

(b) (3 points)

$$
\int_{\frac{1}{2}}^{1} \int_{0}^{2 x} \cos \left(\pi x^{2}\right) d y d x
$$

(c) (4 points)

$$
\int_{0}^{\pi} \int_{0}^{1-\cos \theta} r \sin \theta d r d \theta
$$

2. (10 points)

Evaluate the given integrals using either cartesian or polar integration, whichever works best for the given problem, and sketch the domain of integration. (Hint: Make the sketch first.)
(a) (5 points)
$\iint_{S}\left(x^{2}-x y\right) d A ;$
S is the region between $y=x$ and $y=3 x-x^{2}$.
(b) (5 points)

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y
$$

3. (10 points)

For the solid bounded by the cylinder $x^{2}+y^{2}=9$ and the planes $z=0$ and $z=4$ calculate:
(a) (3 points)

The volume of the solid.
(b) (3 points)

The mass of the solid assuming the density is given by:

$$
\rho(x, y, z)=2\left(x^{2}+y^{2}+z^{2}\right)
$$

(c) (4 points)

The center of mass of the solid with the above density function. (Note: You should only have to calculate one of the three center of mass coordinates here. The other two should be obvious, but you should say why they're obvious.)
4. (10 points)

Calculate the following quantities:
(a) (5 points)

The surface area of the part of the surface $z=\frac{x^{2}}{4}+4$ that is cut off by the planes $x=0, x=1, y=0$, and $y=2$.
(b) (5 points)

The area in the first quadrant between the curves defined by the equations $x^{2}+y^{2}=36$ and $x^{2}-6 x+y^{2}=0$. (Note - You should do this problem as a double integral in polar coordinates. Any other argument will not receive full credit.)

5. (10 points)

Evaluate the integral $\int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x$.
(Note - You must provide a formal evaluation of any integral. For full credit you can't just quote a result from the textbook or from lecture, you must rederive the result. Also, your final answer may be in terms of μ and σ.)

