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1. (10 points)

For the vectors:

a = −3i + 2j − 2k

and

b = −i + 2j − 4k.

Calculate:

(a) (2 points)

a + b

(b) (2 points)

a − b
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(c) (3 points)

a · b

(d) (3 points)

a × b
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2. (10 points)

For the function:

f(x, y, z) = x3y + y2z2

Calculate:

(a) (4 points)

The gradient ▽f(x, y, z) of the function f(x, y, z).

(b) (4 points)

The directional derivative at the point p = (−2, 1, 3) in the di-
rection of the vector a = i − 2j + 2k.

(c) (2 points)

The maximum value of the directional derivative at the point
p = (−2, 1, 3).

3



3. (10 points)

Evaluate the double integral:

∫ ∫
S

ex2+y2

dA

Where S is the region enclosed by x2 + y2 = 4. Make a sketch of this
region before you calculate the integral.
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4. (10 points)

Evaluate the line integral:

∫
C

xeyds

Where C is the line segment from (−1, 2) to (1, 1).

Note - As always, ds here means the differential with respect to arc
length.
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5. (10 points)

Evaluate the line integral:

∮
C
(e3x + 2y)dx + (x2 + sin y)dy

Where C is the rectangle with vertices (2, 1), (6, 1), (6, 4), and (2, 4)
traversed in the counter-clockwise direction.

Hint - Use Green’s theorem.
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6. (10 points)

For the function:

f(x, y) = e−(x2+y2
−4y)

find all the critical points, and indicate whether each such point gives
a local maximum, a local minimum, or a saddle point.
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7. (10 points)

Find the volume of the solid bounded by the cylinders x2 = y and
z2 = y and the plane y = 1.

Hint - Your x and z limits depend only on y.

8



8. (10 points)

For the vector field:

F = (6xy3 + 2z2)i + (9x2y2)j + (4xz + 1)k

defined on all of 3-space:

(a) (3 points)

Prove that the vector field is conservative by demonstrating that
its curl is identically 0.

(b) (4 points)

Figure out the generating scalar function f such that ▽f = F.
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(c) (3 points)

Calculate the line integral from the point (0, 0, 0) to the point
(1, 1, 1) along any path using any method you wish.
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9. (10 points)

Evaluate the integral
∫

∞

−∞

e−
(x−µ)2

2σ2 dx.

(Note - You must provide a formal evaluation of any integral. For
full credit you can’t just quote a result from the textbook or from
lecture, you must rederive the result. Also, your final answer may
be in terms of µ and σ.)
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10. (10 points)

Prove the identity:

∫ x

0

∫ v

0

∫ u

0
f(t)dtdudv =

1

2

∫ x

0
(x − t)2f(t)dt

Hint - Switch the order of integration.
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