Math 2210 - Final Exam

University of Utah

Summer 2007

Name:

\qquad

1. (10 points)

For the vectors:

$$
\begin{gathered}
\mathbf{a}=-3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k} \\
\quad \text { and } \\
\mathbf{b}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k} .
\end{gathered}
$$

Calculate:
(a) (2 points)
$\mathbf{a}+\mathbf{b}$
(b) (2 points)
$\mathbf{a}-\mathbf{b}$
(c) (3 points)
$\mathbf{a} \cdot \mathbf{b}$
(d) (3 points)
$\mathbf{a} \times \mathbf{b}$

2. (10 points)

For the function:

$$
f(x, y, z)=x^{3} y+y^{2} z^{2}
$$

Calculate:

(a) (4 points)

The gradient $\nabla f(x, y, z)$ of the function $f(x, y, z)$.
(b) (4 points)

The directional derivative at the point $\mathbf{p}=(-2,1,3)$ in the direction of the vector $\mathbf{a}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.
(c) (2 points)

The maximum value of the directional derivative at the point $\mathbf{p}=(-2,1,3)$.

3. (10 points)

Evaluate the double integral:

$$
\iint_{S} e^{x^{2}+y^{2}} d A
$$

Where S is the region enclosed by $x^{2}+y^{2}=4$. Make a sketch of this region before you calculate the integral.
4. (10 points)

Evaluate the line integral:

$$
\int_{C} x e^{y} d s
$$

Where C is the line segment from $(-1,2)$ to $(1,1)$.
Note - As always, $d s$ here means the differential with respect to arc length.

5. (10 points)

Evaluate the line integral:

$$
\oint_{C}\left(e^{3 x}+2 y\right) d x+\left(x^{2}+\sin y\right) d y
$$

Where C is the rectangle with vertices $(2,1),(6,1),(6,4)$, and $(2,4)$ traversed in the counter-clockwise direction.
Hint - Use Green's theorem.

6. (10 points)

For the function:

$$
f(x, y)=e^{-\left(x^{2}+y^{2}-4 y\right)}
$$

find all the critical points, and indicate whether each such point gives a local maximum, a local minimum, or a saddle point.

7. (10 points)

Find the volume of the solid bounded by the cylinders $x^{2}=y$ and $z^{2}=y$ and the plane $y=1$.
Hint - Your x and z limits depend only on y.

8. (10 points)

For the vector field:

$$
\mathbf{F}=\left(6 x y^{3}+2 z^{2}\right) \mathbf{i}+\left(9 x^{2} y^{2}\right) \mathbf{j}+(4 x z+1) \mathbf{k}
$$

defined on all of 3-space:
(a) (3 points)

Prove that the vector field is conservative by demonstrating that its curl is identically 0 .
(b) (4 points)

Figure out the generating scalar function f such that $\nabla f=\mathbf{F}$.
(c) (3 points)

Calculate the line integral from the point $(0,0,0)$ to the point $(1,1,1)$ along any path using any method you wish.
9. (10 points)

Evaluate the integral $\int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x$.
(Note - You must provide a formal evaluation of any integral. For full credit you can't just quote a result from the textbook or from lecture, you must rederive the result. Also, your final answer may be in terms of μ and σ.)
10. (10 points)

Prove the identity:

$$
\int_{0}^{x} \int_{0}^{v} \int_{0}^{u} f(t) d t d u d v=\frac{1}{2} \int_{0}^{x}(x-t)^{2} f(t) d t
$$

Hint - Switch the order of integration.

