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In the last two lectures we’ve talked about differential equations for
modeling populations. Today we’ll return to the theme we touched upon
in our second lecture, acceleration-velocity models, and see how differ-
ential equations can be used to model air resistance. We’ll also discuss
concepts with cool names, like “terminal velocity” and “escape velocity”.

The problems for this section are:

Section 2.3 - 1, 2, 4, 10, 24

Acceleration-Velocity Models

If an object is close to the earth’s surface and we neglect any effects from
air resistance, then the object will experience a constant downward force
from gravity, and Newton’s second law tells us that:

m
dv

dt
= FG

where m is the object’s mass, v is the object’s velocity, and FG is the
constant force from gravity, which will be −mg.

This is very simple, and can be an OK model for some correspondingly
simple physical situations, but in almost every real life situation we’ll need
to take air resistance into account. The phenomenon of air resistance is
a pretty complicated one, which we won’t discuss in depth, but we will
look at some air resistance models that give us a better idea of what goes
on when an object falls on the earth’s surface, and will also demonstrate
mathematically some important behaviors we observe in real life.
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Resistance Proportional to Velocity

The first model we’ll consider is the situation where air resistance is pro-
portional to velocity, and in the opposite direction:

FR = −kv

where k is a positive constant, and v is the object’s velocity. Now, com-
bining the air resistance with the (still assumed to be constant) force from
gravity and again using Newton’s second law we get:

m
dv

dt
= −kv − mg

⇒
dv

dt
= −ρv − g

where ρ =
k

m
.

Example - Solve the first-order differential equation given above.

Solution - We can rewrite this differential equation as:

dv

dt
+ ρv = −g.

The integrating factor for this differential equation is σ(t) = e
R

ρdt =
eρt.1 If we multiply both sides by σ(t) we get:

eρt dv

dt
+ ρeρtv = −geρt.

We can rewrite this as:

d

dt
(eρtv) = −geρt.

1The integrating factor is usually represented with the letter ρ, but here I’m using σ

because we’ve already used ρ.
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Integrating both sides with respect to t gives us:

eρtv = −
g

ρ
eρt + C.

Solving this for v we get:

v(t) = Ce−ρt −
g

ρ
.

If we set v(0) = v0 then we have C = v0 +
g

ρ
, and so our final solution

is:

v(t) =

(

v0 +
g

ρ

)

e−ρt −
g

ρ
.

We note as t → ∞ our velocity approaches the value −
g

ρ
. This is called

the object’s terminal velocity. The absolute value of this is called the object’s
terminal speed and is given by:

|vτ | =
mg

k
.

This phenomenon of terminal speed is what makes skydiving possible.

Example - A woman bails out of an airplane at an altitude of 10,000 ft,
falls freely for 20s, then opens her parachute. How long will it take her
to reach the ground? Assume linear air resistance ρv ft/s2, taking ρ = .15
without the parachute and ρ = 1.5 with the parachute.

Solution - We have:

v(t) =

(

v0 +
g

ρ

)

e−ρt −
g

ρ
.

If we integrate this to find x(t) we get:
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x(t) = −
g

ρ
t −

1

ρ

(

v0 +
g

ρ

)

e−ρt + C.

Plugging in the initial condition x(0) = x0 we get:

C = x0 +
1

ρ

(

v0 +
g

ρ

)

= x0 +
1

ρ
(v0 − vτ ).

Using this value for C after a little algebra our equation for x(t) be-
comes:

x(t) = x0 + vτ t +
1

ρ
(v0 − vτ )(1 − e−ρt).

Now, the initial distance is x0 = 10, 000 ft, the initial velocity is v0 = 0

ft/s, the terminal velocity is vτ = −
32.2

.15
ft/s, and ρ = .15/s. The total

distance traveled in the first 20 seconds is:2

x(20) = 10, 000−

(

32.2

.15

)

(20) =
1

.15

(

0 +
32.2

.15

)

(1 − e−.15(20)) ≈ 7, 067ft.

The velocity of the skydiver after 20 seconds is:

v(20) =

(

0 +
32.2

.15

)

e−.15(20) −
32.2

.15
≈ 204 ft/s.

Now, to find the total time for the rest of the trip down we want to
solve for tf in the equation:

0 = 7, 067 −

(

32.2

1.5

)

tf +

(

1

1.5

) (

−204 +
32.2

1.5

)

(1 − e−1.5tf ).

Using a calculator to find this we get:

2Leaving out units on the intermediate steps. Trust me, they work out.
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tf ≈ 323 seconds.

So, the total skydive time is about 323s+20s = 343s, or about 5 minutes
and 43 seconds.

Variable Gravitational Acceleration

The model of constant gravitation only works when we’re close to the sur-
face of the earth, and the distances we’re dealing with are small relative to
the radius of the earth. If we start to deal with larger distances, then we
must take into account that acceleration from gravity is weaker the farther
we are away from the earth. Newton’s law of universal gravitation tells us
that the force from gravity experienced a distance r from the center of the
earth will be:

F = −
GmM

r2

where m is the mass of the object, M is the mass of the earth, and G is
Newton’s gravitational constant G = 6.67 × 10−11Nm2/kg2.

We can use this relation to calculate an object’s escape velocity on the
surface of the earth. This is the speed at which an object must be moving
away from the earth at the earth’s surface if it is to break free from the
gravitational attraction of the earth and continue to move away “forever”.

Well, we note that if we move away from the earth along a line that
goes through the earth’s center, then Newton’s second law tells us:

d2r

dt2
= −

GM

r2
.

By the chain rule we have
dv

dt
=

dv

dr

dr

dt
, and if we note v =

dr

dt
then we

can transform this relation into:

v
dv

dr
= −

GM

r2
.

If we integrate both sides with respect to r we get:
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1

2
v2 =

GM

r
+ C.

If we set v(0) = v0 and solve this for C we get:

v2 = v2
0 + 2GM

(

1

r
−

1

R

)

.

If the object is to escape from the “clutch” of the earth then its velocity
must always be positive as r → ∞. This will be the case if

v0 ≥

√

2GM

R
.

So, the escape velocity for the earth (or for any planet of a given mass
M) is:

v0 =

√

2GM

R
.

For the earth the escape velocity is v0 ≈ 11, 180m/s.

Example - Suppose that you are stranded - your rocket engine has failed
- on an asteroid of diameter 3 miles, with density equal to that of the earth
with radius 3960 miles. If you have enough spring in your legs to jump 4
feet straight up on earth while wearing your space suit, can you blast off
from this asteroid using leg power alone?

Solution - The escape velocity for the Earth is

v2
E =

2GME

RE

.

Solving for ME in this equation we get:

ME =
v2

ERE

2G
.

The density of the earth is its mass divided by its volume:
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ME

4
3
πR3

E

=
3v2

E

8πGR2
E

.

A similar calculation can be done for the asteroid, and given both the
asteroid and the Earth have the same density we get:

3v2
E

8πGR2
E

=
3v2

A

8πGR2
A

.

With a little algebra from this we can deduce the ratio:

vA

vE

=
RA

RE

.

So, the escape velocity from the asteroid is:

vA = vE

(

RA

RE

)

= 11, 180m/s

(

1.5miles

3960miles

)

= 4.24m/s.

On the earth when you jump all your energy is initially kinetic energy,
1

2
mv2, and at the top of the jump all that energy is converted into potential

energy, mgh. So, the initial velocity of the jump is related to the final height
by the equation:

v =
√

2gh.

Plugging 4 feet in for h we get:

vJump =
√

2(9.8m/s)(4ft)(1m/3.28ft) = 4.89m/s > 4.24m/s.

So, yes, you can get off the asteroid! Where you’ll go after that, I don’t
know.
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Notes on Homework Problems

Problem 2.3.1 is straightforward.

Problems 2.3.2 and 2.3.4 examine a similar problem, but in 2.3.2 you
examine a situation where resistance is proportional to velocity, and in
2.3.4 resistance is proportional to the square of the velocity. What you find
is that in the first situation the object stops moving in a finite amount of
time, but in the second situation the object keeps moving forever. Keep in
mind on these problems that, when 0 < k < 1 we have k2 < k.

Problem 2.3.10 looks mighty familiar...

Problem 2.3.24 deals with black holes, one of the most amazing things
in the universe! Something interesting about black holes is that we can
use the classical formula for the escape velocity to derive the radius of
the black hole, and the location of what is known as the “event horizon”.
However, while our equation is correct, the reasoning is totally bogus be-
cause a black hole is a very nonclassical situation. In fact, if you analyze a
black hole using just special relativity, you find that the classical formula is
off by a factor of 2. However, if you then do it correctly using general rela-
tivity, an additional factor of 2 is introduced that gives us back our original
equation. It’s kind of wild that things work out that way, but they do!
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