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Equilibrium Solutions and Stability

Today we’re going to talk about the general behavior of autonomous differ-
ential equations, and how we can extract information about the behavior
of these differential equation even when it might be hard or next to impos-
sible to solve them explicitly. Today’s lecture corresponds with section 2.2
of the textbook.

The exercises for this section are

Section 2.2 - 1, 10, 21, 23, 24

Introduction

In the previous lecture we examined the simple population growth1 equa-
tion:

dx

dt
= kx

where k is a constant. We also examined the more sophisticated logistic
growth equation:

dx

dt
= kx(M − x)

1Or, in general, exponential growth.

1



and saw that these equations were solved, respectively, by the solu-
tions:

x(t) = x0e
kx

and

x(t) =
Mx0

x0 + (M − x0)e−kMt
.

We were lucky with these equations in that we were able to find ex-
plicit solutions without too much bother. Unfortuantely, this isn’t always
the case. In fact, it’s rarely the case. However, even when it’s difficult
or impossible to solve a differential equation precisely, we can sometimes
still get important information about the behavior of the solutions by an-
alyzing the form of the differential equation. Today we’re going to talk
about ways of doing this for a special type of differential equation called
an autonomous differential equation.

Autonomous Differential Equations and Phrase Diagrams

A differential equation is called autonomous if it has the form:

dx

dt
= f(x).

This means that the differential equation does not depend explicitly on
the independent variable t, although of course the variable x is a function
of t.

Both the population growth equations mentioned above are autonomous
differential equations. For each of these we can draw something called a
phase diagram. These are pictured below for the two differential equations
mentioned above.
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Now, what we do to create these phase diagrams is that we solve for the
critical points of the function f (i). These critical points are the points where
the funciton is equal to zero, so the points i such that 1(i) = 0. In between
these critical points, if we assume (as we will) that f(.i) is continuous, the
function f(i) will be either positive or negative.

To construct a phase diagram we draw a portion of the i-axis contain
ing all the critical points, and we mark the critical points with dots. Then,
above the segments and in between these critical points we draw a left
arrow if J(.r) is negative on the segment, and a right arrow if f(i) is posi
tive on the segment. We also draw the appropriate arrows for the regions
greater than any critical point and less than any critical point.
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These critical points represent what are called equilibrium solutions to

our differential equation. These are solutions of the form .r(t) = e, where (

is a constant.

Stability of Critical Points

The technical definition of stability of a critical point is this:

Definition - The critical point :1 e is stable if, for each i > 0, there

exists a > 0 such that:

— c < implies that for all t > 0 we have i(t) — ( <

Now, what this is saying is that if you start our sufficiently close to the

critical point, within some “band”, you’ll always stay within that band.

We can see this phenomenon in action if we look at some solution

curves for the logistic growth equation:

Now, it’s easy to tell from a phase diagram which critical points are

stable and which are not. If your critical point has two arrows going into

it, then it’s stable. If it has two arrows going away from it, then it’s unsta

ble. There can also exist the (rare) situation where a critical point has one

/
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We can see that for the critical point c = M we have a stable critical

point, and that solutions around the point “funnel” towards it. The critical

point :i: 0 on the other hand is an unstable critical point, and we can see

that solutions close to it diverge.
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arrow going into it and one arrow going out of it. Such a situation we call
semistable.

Harvesting a Logistic Population

The autonomouos differential equation:

dx

dt
= kx(M − x) − h

may be considered to describe a logistic population with harvesting.
For instance, we might think of the population of fish in a lake from which
h fish per year are removed by fishing.

If we solve for the critical points of this differential equation, the quadratic
equation tells us these critical points are:

c =
kM ±

√

(kM)2 − 4hk

2k
.

If h <
kM2

4
then we will have two solutions, call them H and N , where

H < N . In this case we can rewrite our differential equation as

dx

dt
= k(N − x)(x − H).

Exercise - Construct the phase diagram for the differential equation
above.

The solution to this differential equation (which you’ll derive and check
as part of your homework) is:
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N(:i;o — H) — H(i0 —

:r(t)
= (ro — H) — (ru — N)e (N—I!)(

If we graph some representative solution curves of this differential

equation we’ll get a picture that looks like:

>‘,

— -

-

We can see that around N we have a stable critical point, and around II

we have an unstable critical point. What this means is that for any initial

value greater than H our population size will approach N as time goes on.

For any initial value less than H our population size will approach —c in

a (finite!) amount of time. Of course in reality you can’t have less than 0

fish, and so the model would definitely break down when the population

becomes sufficiently small.
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Now, if ii = then we’d have a situation with just one critical point4
?J/2, and a phase diagram that looks like:

Here our solution curves look like:

k i\ [2

For ii > we would have no (real number) critical points, and4
no matter what our solutions go to — c as time increases. These solution
curves look like:

liz-

and we’d have what’s called a semistable equilibrium.

f
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Bifurcation

We can actually see that there’s a relation between our critical points and

the value of our initial paramater h. The relation can be written as:

ii = — c2)

If we graph this relation we’ll get a parabolic curve of the form below:

This is called a bifurcation diagram. It tells us for a given value of k

how many critical points we have, and what these critical points will be.

These bifurcation diagrams are very important in the study of nonlinear

differential equations and chaos.

Notes On Homework Problems

The first two problems from the problem set, problems 2.2.1 and 2.2.10, are

straightforward phase diagram problems, and they also ask you to solve

relatively simple separable differential equations. Shouldn’t be too bad.

Problem 2.2.21 investigates a bifurcation diagram for a different differ

ential equation - the equation di:/dt =
—

Problem 2.2.23 examines a variation of the harvesting problem from

these notes, where instead of fish being removed at a constant rate, the

(

1
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fish are removed at a rate proportional to the fish population. You’ll prove
that this change actually leaves the differential equation as a logistic dif-
ferential equation, just with different parameters.

Problem 2.2.24 is where you’re actually asked to solve the differential
equation for the logistic differential equation with harvesting mentioned
above. Hint: It’s separable. So, separate the variables, and then use a
partial fraction decomposition as we’ve done in the other problems of this
type.
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