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Today we’re going to examine the first-order version of a type of dif-
ferential equation that we’re going to see quite a bit more of in this class.
So, get comfortable with them, because you’ll be seeing them again!

This type of differential equation is a linear differential equation. A
first-order linear differential equation is an equation of the form

dy

dx
+ P (x)y = Q(x).

Today, we’re going to learn how to solve differential equations of this
form.

The exercises for this section are:

Section 1.5 - 1, 15, 21, 29, 38, 42
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First-Order Linear Differential Equations

When we say a differential equation is linear, we mean it’s linear in the
dependent variable y and its derivatives. So, the equation

y′ + (ex sin x2)y = x3 + 2x2
− 5x + 2

is linear, while the differential equation

(y′)2 = x

is not.

We can multiply both sides of a first-order linear differential equation

dy

dx
+ P (x)y = Q(x)

by an integrating factor. An integrating factor is a function ρ(x, y) such
that, if we multiply both sides by that function, we can recognize both
sides of the equation as a derivative. In this case the integrating factor is

ρ(x) = e
R

P (x)dx.

The derivative of ρ is1

dρ

dx
= P (x)e

R

P (x)dx.

Using this, we see that the derivative of ye
R

P (x)dx is

d

dx
(ye

R

P (x)dx) = e
R

P (x)dx
dy

dx
+ e

R

P (x)dxP (x)y.

1That’s the sound of the men working on the chain... rule.
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Using this, we see that if we have the differential equation

dy

dx
+ P (x)y = Q(x)

we can multiply both sides by the integrating factor ρ(x) = e
R

P (x)dx to
get

e
R

P (x)dx
dy

dx
+ e

R

P (x)dxP (x)y = e
R

P (x)dxQ(x).

If we then integrate both sides with respect to x we get

e
R

P (x)dxy =

∫

(e
R

P (x)dxQ(x))dx + C,

which we can then solve for y to get:

y(x) = e−
R

P (x)dx

(
∫

(e
R

P (x)dxQ(x))dx + C

)

.2

Daaaaang! Let’s do an example.

2The book warns you to not memorize this equation. So, whatever you do, don’t go
memorizing this equation. You should just memorize the method by which we derived
the equation. Or, I suppose, in a pinch you could also memorize the equation. But,
in practice (at least in this class), things usually aren’t as scary as this general solution
might make them look.
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Example - Solve the initial value problem

y′
− 2xy = ex

2

y(0) = 0.
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Existence, Uniqueness, and Examples

Now, again, before we spend too long trying to solve a differential equa-
tion, we’d like to know whether or not a solution even exists, and if it does
exist, if the solution is unique. For linear differential equations, we have a
theorem that’s even nicer than our result from section 1.3.

Theorem - If the functions P (x) and Q(x) are continuous on the open
interval I containing the point x0, then the initial value problem

dy

dx
+ P (x)y = Q(x), y(x0) = y0

has a unique solution y(x) on I .

Note that we’re guaranteed a unique solution on the entire interval I ,
not just on some possibly smaller interval like we had for the theorem
from section 1.3. Linear differential equations are nice that way.

As a first application of linear first-order equations, we consider a tank
containing a solution - a mixture of solute and solvent - such as salt dis-
solved in water. There is both inflow and outflow, and we want to com-
pute the amount x(t) of solute in the tank at time t, given the amount
x(0) = x0 at time t = 0. Suppose that solution with a concentration of
ci grams of solute per liter of solution flows into the tank at the constant
rate of ri liters per second, and that the solution in the tank - kept thor-
oughly mixed by stirring - flows out at the constant rate of ro liters per
second.

The amount of solute flowing into the tank will be

rici,

while if co is the concentration of the outgoing solution the amount of
solute flowing out of the tank will be

roco.
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So, if x(t) represents the amount of solute in the tank, its rate of change
will be:

dx

dt
= rici − roco.

Now, we’ll usually assume ri, ro, and ci are constant, but the output
concentration might very well be changing over time. So, co will be given
by

co =
x(t)

V (t)
.

Here V (t) is the volume of water in the tank, which itself might be
changing over time. Well, if we plug this in for co we get a linear first-
order differential equation! Namely,

dx

dt
= rici −

ro

V
x.
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Example - A 120-gallon (gal) tank initially contains 90 lbs of salt dis-
solved in 90 gal of water. Brine containing 2 lb/gal of salt flows into the
tank at a rate of 4 gal/min, and the well-stirred mixture flows out of the
tank at a rate of 3 gal/min. How much salt does the tank contain when it
is full?
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Notes on Homework Problems

The first three assigned problems, 1.5.1, 1.5.15, and 1.5.21 are there so you
can get some practice using the integrating factor method. Shouldn’t be
too bad.

The fourth problem, 1.5.29, is a pretty cool problem that involves the
“error function”, a function that is absoutely ubiquitous in probability and
statistics given its relation to the central limit theorem. It’s also not a func-
tion that can be expressed in terms of the standard functions (exponen-
tials, logarithms, polynomials, sines, cosines, etc...) that you’ve learned to
know and love. It’s a “special function”, of which you’ll see many if you
take higher level engineering, physics, or applied math classes.

Problem 1.5.38 is a bit involved, but not terribly difficult if you set it up
correctly. Take some time logically thinking through how to set it up! Once
it’s begun correctly, it’s not so bad. Also, the third part of the problem tests
your optimization skillz from calculus I.

Problem 1.5.42 is a nifty little problem with a pretty simple end result.
I thought it was fun!

8


