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For the last two lectures we’ve studied first-order differential equations
in standard form:

y′ = f(x, y).

We learned how to solve these differential equations for the special sit-
uation where f(x, y) is independent of the variable y, and is just a function
of x, so f(x, y) = f(x). We also learned about slope fields, which give us a
geometric method for understanding solutions and approximating them,
even if we cannot find them directly.

Today we’re going to discuss how to solve first-order differential equa-
tions in standard form in the special situation where the function f(x, y) is
separable, which means we can write f(x, y) as the product of a function of
x, and a function of y.

The exercises for this section are:

Section 1.4 - 1, 3, 17, 19, 31, 35, 53, 68
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Separable Equations and How to Solve Them

Suppose we have a first-order differential equation in standard form:

dy

dx
= h(x, y).

If the function h(x, y) is separable we can write it as the product of two
functions, one a function of x, and the other a function of y. So,

h(x, y) =
g(x)

f(y)
.

In this situation we can manipulate our differential equation to put
everything with a y term on one side, and everything with an x term on
the other:

f(y)dy = g(x)dx.

From here we can just integrate both sides of the equation, and then
solve for y as a funciton of x. Easy!

For example, suppose we’re given the differential equation

dP

dt
= P 2.

We can rewrite this equation as

dP

P 2
= dt,

and then integrate both sides of the equation to get

−
1

P
= t + C.
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Solving this for P as a function of t gives us

P (t) =
1

C − t
.1

Note that this function has a vertical asymptote as t approaches C. If
this is a population model, this is called doomsday!

Examples of Separable Differential Equations

Suppose we’re given the differential equation

dy

dx
=

4 − 2x

3y2 − 5
.

This differential equation is separable, and we can rewrite it as

(3y2 − 5)dy = (4 − 2x)dx.

If we integrate both sides of this differential equation

∫

(3y2 − 5)dy =

∫

(4 − 2x)dx

we get

y3 − 5y = 4x − x2 + C.

This is a solution to our differential equation, but we cannot readily
solve this equation for y in terms of x. So, our solution to this differential
equation must be implicit.

1Note that we’re playing a little fast and loose with the unknown constant C here.
In particular, if we multiply an unknown constant C by −1, it’s still just an unknown
constant, and we continue to call it (positive) C.
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If we’re given an initial value, say y(1) = 3, then we can easily solve
for the unknown constant C:

33 − 5(3) = 4(1) − 12 + C ⇒ C = 9.

So, around the point (1, 3) the differential equation will have the unique
solution given implicitly by the curve defined by

y3 − 5y = 4x − x2 + 9.

Example - Solve the differential equation

dy

dx
= 6x(y − 1)

2

3 .

Solution - This is a separable differential equation, and we can rewrite
it as:

dy

(y − 1)
2

3

= 6xdx.

Integrating both sides we get:

∫

dy

(y − 1)
2

3

=

∫

6xdx

⇒ 3(y − 1)
1

3 = 3x2 + C.

Solving this for y we get:

y(x) = (x2 + C)3 + 1.

Now, we note that y(x) = 1 is also a solution to this differential equa-
tion. So, if we’re given the initial condition y(0) = 1 we have two solutions,
namely:
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y1(x) = x6 + 1 and y2(x) = 1.

So, what gives? Well, the reason we can have two solutions is that
while the function

f(x, y) = 6x(y − 1)
2

3

is continuous everywhere, its partial derivative

∂f

∂y
=

4x

(y − 1)
1

3

is undefined where y = 1. So, for any initial condition y(a) = b where
b 6= 1 there is, locally, a unique solution. But, for b = 1, there is not.

A very common, and simple, type of differential equation that is used
to model many, many things2 is:

dx

dt
= kx,

where k is some constant.

Now, this is a separable equation, and so it can be solved by our meth-
ods. First, we rewrite it as

dx

x
= kdt,

and then integrate both sides

∫

dx

x
=

∫

kdt

2Compound interest, population growth, radioactive decay, etc...
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to get

ln x = kt + C.

If we then exponentiate both sides we get

x(t) = ekt+C = eCekt = Cekt.3

So, the solution to our differential equation is exponential growth (if
k > 0) or exponential decay (if k < 0). If k = 0 the answer is just a boring
unknown constant.

Radioactive decay is quite accurately measured by an exponential de-
cay function. For 14C decay, the decay constant is k ≈ −0.0001216 if t is
measured in years.

Example - Carbon taken from a purported relic of the time of Christ con-
tained 4.6 × 1010 atoms of 14C per gram. Carbon extracted from a present-
day specimen of the same substance contained 5.0× 1010 atoms of 14C per
gram. Compute the approximate age of the relic. What is your opinion as
to its authenticity?

Solution - The equation for the amount of 14C will be:

C(t) = C0e
kt,

where C0 = 5.0 × 1010 atoms, and k = −0.0001216. We’re given that

C(t0) = 4.6 × 1010 atoms.

So, this means:

3The American Society for the Prevention of Notation Abuse would strongly protest
this last equality. I’m just saying that eC , where C is an unknown constant, is itself just an
unknown constant, and I don’t like having to come up with new letters, so I just continue
to represent the unknown constant as C.
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4.6 × 1010 = (5.0 × 1010)e−.0001216t0 .

Solving this for t0 we get:

t0 =
ln

(

4.6×101−

5.0×1010

)

−0.0001216
≈ 685.7 years.

So, based upon this test, if our assumptions are correct it would appear
the relic is not from the time of Christ. Still pretty old, but not nearly that
old.

Notes on Homework Problems

Problems 1.4.1, 1.4.3, 1.4.17, and 1.4.19 are all straightforward separable
differential equations like the examples above.

Problem 1.4.31 investigates the subtle distinctions between two seem-
ingly very similar differential equations.

Problem 1.4.35 and 1.4.53 are standard radiocarbon dating problems.
Shouldn’t be too hard.

Problem 1.4.68 is a challenge! It’s an introduction to one of the most
awesome problems in the history of mathematics, the brachistochrone! It’s
also the problem that led to a field of analysis called the “calculus of vari-
ations”, which is extremely important in physics. In fact, it’s one of my fa-
vorite ideas in all of nature! There’s a lecture in volume 1 of The Feynman
Lectures on Physics about the principle of least action that I’d strongly rec-
ommend you read. This problem won’t be graded, but I hope you give it
some effort.
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