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Today, we’ll develop some of our machinery for using Fourier series,
and see how we can use these Fourier series to solve some simple differ-
ential equations.

Today’s lecture corresponds with section 9.3 from the textbook. The
assigned problems for this section are:

Section 9.3 - 1, 5, 8, 13, 20

Fourier Sine and Cosine Series

First, we recall some basic facts about odd and even functions. A function
is odd if it satisfies:

f(−t) = −f(t);

while a function is even if it satisfies:

f(−t) = f(t).

If f(t) is an even function, then:

∫

a

−a

f(t)dt = 2

∫

a

0

f(t)dt;
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while if f(t) is an odd function:

∫

a

−a

f(t)dt = 0.

Using just these basic facts we can figure out some important proper-
ties of Fourier series for odd or even functions.

The product of two odd or two even functions is even, while the prod-
uct of an odd and even function is odd. This is analogous to adding inte-
gers, which makes sense if you think of an even function as a function
whose Maclaurin series consists of nothing but terms with even expo-
nents, and an odd function as a funciton whose Maclaurin series consists
of nothing but terms with odd exponents.

So, if f(t) is even then

1

L

∫

L

−L

f(t) sin

(

nπt

L

)

dt = 0,

and only the an terms, a.k.a. the cosine terms, show up in the Fourier
series for the function f(t).

Similarly, if f(t) is odd then

an =
1

L

∫

L

−L

f(t) cos

(

nπt

L

)

dt = 0,

and only the bn terms survive.

Odd and Even Extensions

Suppose we have a function f(t) defined on the open interval 0 < t < L.
We can define the odd extension of this function on the interval −L ≤ t ≤
L as:
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fodd(t) =







f(t) 0 < t < L

−f(−t) −L < t < 0
0 t = {−L, 0, L}

This function will be odd on the interval [−L, L], and will be equal to
f(t) where f(t) is defined. We can then further extend this function to the
entire real line by defining it to be 2L periodic. This extension to the entire
real line is called the odd extension of the function f(t). We note that this
odd extension is, unsurprisingly, an odd function.

In the same manner we can define an even extension for the function
f(t) on the interval −L ≤ t ≤ 0 as:

feven(t) =















f(t) 0 < t < L

f(−t) −L < t < 0
limt→0+ f(t) t = 0
limt→L− f(t) t = ±L

We note here that we’ve assumed the limits here are well defined. If
they’re not, we just say that our even extension is undefined at the corre-
sponding points. As these are isolated points they won’t affect integrals,
and so won’t matter in our calculations of Fourier series. The even exten-
sion of the function f(t) is just the function defined above made periodic
over the whole real line. Again, we note that the even extension is equal
to the original function f(t) on the interval upon which f(t) is defined.

So, for any function f(t) defined on the interval 0 < t < L we have
an odd extension and an even extension, and both these extensions agree
with f(t) on the interval 0 < t < L.

Example - Graph the odd and even extensions of the functions:

f(t) = 1; for 0 < t < 1,

and

g(t) = t; for 0 < t < 1.
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Room for the example problem.

Now, using our earlier results from odd and even functions, we can
see that the Fourier series for the odd extension of the function f(t) will
only have sine terms, while the Fourier series for the even extension of the
function f(t) will only have cosine terms. These Fourier series are called
the Fourier sine and Fourier cosine series, respectively, for the function
f(t).
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Fourier Series and Differential Equations

This is a differential equations class, so of course what we’re going to want
to do with Fourier series is use them to solve differential equations. In
order to do this, we’ll need to know how to differentiate a Fourier series,
which is where this next theorem comes into play.

Theorem - Suppose that the function f is continuous and piecewise
smooth for all t, and is periodic with period 2L. Then the Fourier series of
f ′(t) is the series:

f ′(t) =

∞
∑

n=1

(

−
nπ

L
an sin

(

nπt

L

)

+
nπ

L
bn cos

(

nπt

L

))

obtained by termwise differentiation of the Fourier series:

f(t) =
a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

.

Using this result, we can use Fourier series to find solutions to differ-
ential equations.

Example - Find a Fourier series solution to the endpoint value problem:

x′′(t) + 4x(t) = 4t

x(0) = x(1) = 0.
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More room for the example problem.
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Now, in closing we note that we can integrate Fourier series termwise
as well, this time with less restrictive conditions on the function f(t).

Theorem - Suppose that f is a piecewise continuous periodic function
with period 2L and Fourier series:

f(t) ∼
a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

,

which may not converge. Then

∫

t

0

f(s)ds =
a0t

2
+

∞
∑

n=1

L

nπ

(

an sin

(

nπt

L

)

− bn

(

cos

(

nπt

L

)

− 1

))

,

with the series on the right-hand side convergent for all t. Note that
the integral series is the result of term-by-term integration of the Fourier
series for f(t), but, if a0 6= 0, it’s not a Fourier series because of the linear
term 1

2
a0t.

Notes on Homework Problems

For problems 9.3.1, 9.3.5, and 9.3.8 you’re given a function defined on an
interval. For each problem you’re asked to take both the even and odd
extension of the function, and figure out the corresponding Fourier cosine
and sine series. These aren’t too hard, but they take some time.

Problem 9.3.13 asks you to find the solution to an ODE using Fourier
series. Similar to the example problem from these notes.
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