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The next major concept about which we’ll learn is that of Fourier se-
ries. Fourier series are some of the most interesting and useful objects (or
methods, or whatever) in mathematics. Fourier series are used all the time
for both practical and theoretical mathematics, and there are whole ad-
vanced1 classes on the subject. So, needless to say, in the next two weeks
we’ll only be putting our toe in the ocean. However, we can learn enough
to get some useful and interesting results, and to understand the basic idea
behind the method.

Today’s lecture corresponds with section 9.1 of the textbook. The as-
signed problems are:

Section 9.1 - 1, 8, 11, 13, 21

Periodic Functions and Trigonometric Series

Let’s begin by taking a look at a relatively simple differential equation
we’ve met before:

x′′(t) + ω2

0
x(t) = f(t).

We’ve learned how to solve this ODE for a number of possible func-
tions f(t). We know the solution for f(t) = 0, or when f(t) is made up of

1And very advanced. And very, very advanced.
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sums and products of exponentials, polynomials, sines, and cosines. As a
specific example, suppose:

f(t) = A cos (ωt).

We learned a while ago that a particular solution to this ODE is:

xp(t) =
A

ω2

0
− ω2

cos (ωt)

as long as ω0 6= ω. Using the linearity of our differential equation (a
property which becomes incredibly important in the context of Fourier
series) we can induce from this solution that if:

f(t) =

N
∑

n=1

An cos(ωnt), ωn 6= ω0 for any n.

then our particular solution will be:

xp(t) =
N

∑

n=1

An

ω2

0
− ω2

n

cos(ωnt).

Nothing new here, but this observation is the starting point for the
study of Fourier series. What is says is that for any function f(t), if it can
be represented as a sum of cosine functions, then we know how to solve
it. This idea can be immediately extended to functions that can be repre-
sented as sums of sine and cosine functions. But, how many functions can
be represented as sums of sine and cosine functions? Well, if you allow
infinite sums, quite a few!
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Periodic Functions

A function is periodic with period p if there exists a number p > 0 such
that:

f(t + p) = f(t) for all t.

The smallest such p, if a smallest one exists, is called the period (also
sometime the fundamental period) of the function.

For any piecewise continuous function f(t) of period 2π we can define
its Fourier series:

a0

2
+

∞
∑

n=1

(an cos (nt) + bn sin (nt)).2

The coefficients of this series are defined by:

an =
1

π

∫ π

−π

f(t) cos (nt)dt

for n = 0, 1, 2, . . . and:

bn =
1

π

∫ π

−π

f(t) sin (nt)dt

for n = 1, 2, . . ..

2Note that right now this is just a definition. We’re not making any claims yet about
how it can be used to represent f(t). That’s coming later.
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Calculating Fourier Transforms

Let’s first get down a few facts about integrals of this kind.

∫ π

−π

cos (mt) cos (nt)dt =

{

0 m 6= n

π m = n
;

∫ π

−π

sin (mt) sin (nt)dt =

{

0 m 6= n

π m = n
;

∫ π

−π

cos (mt) sin (nt)dt = 0 always.

Proving these just involves some clever use of trigonometric identities.
As an example, here’s how you’d prove the second relation.

Proof - We first note the trigonometric identities:

cos ((m + n)t) = cos (mt) cos (nt) − sin (mt) sin (nt)

and

cos ((m − n)t) = cos (mt) cos (nt) + sin (mt) sin (nt).

Using these relations we get:

sin (nt) sin (mt) =
cos ((m − n)t) − cos ((m + n)t)

2
.

Therefore, our integral becomes:

∫ π

−π

sin (mt) sin (nt)dt =

∫ π

−π

cos ((m − n)t) − cos ((m + n)t)

2
dt.

If m 6= n this integral evaluates to:
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1

2

[

sin ((m − n)t)

(m − n)
−

sin ((m + n)t)

(m + n)

]
∣

∣

∣

∣

π

−π

=
1

2
(0 − 0) −

1

2
(0 − 0) = 0.

On the other hand, if m = n, then our integral is:

∫ π

−π

sin2 ntdt =

∫ π

−π

1 − cos 2nt

2
dt =

(

t

2
−

sin 2nt

4n

)
∣

∣

∣

∣

π

−π

= π.

Example - Find the Fourier series of the square-wave function:

f(t) =







−1 −π < t < 0
1 0 < t < π

0 t = {−π, 0, π}

Solution - The Fourier series is:

a0 =
1

π

∫ π

−π

f(t)dt = −
1

π

∫

0

−π

dt +
1

π

∫ π

0

dt

= −
1

π
(π) +

1

π
(π) = −1 + 1 = 0.

For n > 0

an =
1

π

∫ π

−π

f(t) cos (nt)dt =
1

π

∫

0

−π

(− cos (nt))dt +
1

π

∫ π

0

cos (nt)dt

= −
sin (nt)

nπ

∣

∣

∣

∣

0

−π

+
sin (nt)

nπ

∣

∣

∣

∣

π

0

= 0.

bn =
1

π

∫ π

−π

f(t) sin (nt)dt = −
1

π

∫

0

−π

sin (nt)dt +
1

π

∫ π

0

sin (nt)dt
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—

(‘—cos(nt)
—

77

1 (‘cos(nt)”
— — cos (nw))

Till

= [1- (-1)°}.

So,

f 0 even
b0=

odd

Therefore, the Fourier transform of the function f(t) is:

4 sin(nt)
f(t)—

Ti =
odd

4 Sill (271 + 1)t

n=O

The partial sums of this series are:

-V

S(t) —

-

sin ((2n + 1)t)

2n+1
fl

The graph of one of these partial sums looks like:
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Example
Find the Fourier transform of the 2π-periodic function:

f(t) =

{

3 −π < t ≤ 0
−2 0 < t ≤ π

Solution
The coefficients of this Fourier series will be:

a0 =
1

π

∫ π

−π

f(t)dt =
1

π
[3π − 2π] = 1;

an =
1

π

[
∫

0

−π

3 cos (nt)dt −

∫ π

0

2 cos (nt)dt

]

= −
3

nπ
sin (nt)

∣

∣

∣

∣

0

−π

−
2

nπ
sin (nt)

∣

∣

∣

∣

π

0

= 0;

bn =
1

π

[
∫

0

−π

3 sin (nt)dt −

∫ π

0

2 sin (nt)dt

]

= −
3

nπ
cos (nt)

∣

∣

∣

∣

0

−π

−
2

nπ
cos (nt)

∣

∣

∣

∣

π

0

= −
3

nπ
+

3

nπ
(−1)n +

2

nπ
((−1)n − 1)

so

bn =

{

0 even

− 10

nπ
odd

Therefore, the Fourier transform of f(t) is:

f(t) ∼
1

2
−

10

π

[

sin (t) +
1

3
sin (3t) +

1

5
sin (5t) + · · ·

]

.
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Notes on Homework Problems

Problems 9.1.1 and 9.1.8 are easy. They really are.

Problems 9.1.11, 9.1.13, and 9.1.21 all require you to find the Fourier
series of a 2π-periodic function. Very similar to the example problems.
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