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Today, we’re going to examine the solutions to the differential equation

x2y′′ + xy′ + (x2
− p2)y = 0,

which is called Bessel’s equation of order p ≥ 0. The solutions to this
equation are called “Bessel functions”, and they are some of the most im-
portant functions in all of applied mathematics. They’re right up there
with sines and cosines in terms of their ubiquity and usefulness. So, it’s
good to have some introduction to them.

Today’s lecture corresponds with section 8.5 from the textbook, and the
assigned problems from this section are:

Section 8.5 - 1, 5, 6, 13, 16

The Solutions to Bessel’s Equation

The point x = 0 is a regular singular point of Bessel’s equation, and its in-
dicial equation is r2

− p2, with roots r = ±p. If we substitute the Frobenius
series

y =

∞
∑

m=0

cmxm+r
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into Bessel’s equation we find in the usual manner that c1 = 0 and that
our coefficients must satisfy the recusion relation:

[(m + r)2
− p2]cm + cm−2 = 0

for m ≥ 2.1

For the case r = p if we write am in place of cm then as a1 = 0 the rela-
tion above gives us that all odd coefficients are 0, while the even cofficients
are given by the recursion relation:

am = −
am−2

m(2p + m)
.

If we write out the first few terms of this sequence we get:

a0 = a0,

a2 = −
a0

22(p + 1)
,

a4 = −
a2

4(2p + 4)
=

a0

24 · 2(p + 1)(p + 2)
,

a6 = −
a4

6(2p + 6)
= −

a0

26 · 2 · 3(p + 1)(p + 3)
,

and the general pattern is

a2m =
(−1)ma0

22mm!(p + 1)(p + 2) · · · (p + m)
.

So, for the root r = p we get the solution

y1(x) = a0

∞
∑

m=0

(−1)mx2m+p

22mm!(p + 1)(p + 2) · · · (p + m)
.

1You will derive this as a homework problem.
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As for the root r = −p, we have the recursion relation (where we write
bm in place of cm):

bm = −
bm−2

m(m − 2p)
.

If p is not a positive integral multiple of 1

2
there is no issue here. If p

is a positive integral multiple of 1

2
then we might have a problem. If it’s

an odd positive integral multiple then, as all the coefficients bm must be 0
when m is odd there is no problem. If p is a positive integer, then we got
problems. We’ll deal with these problems shortly, but first we state that if
p is not an integer then we get the second solution:

y2(x) = b0

∞
∑

m=0

(−1)mx2m−p

22mm!(−p + 1)(−p + 2) · · · (−p + m)
.

Now, recall from lecture 26 that the gamma function is defined as:

Γ(x) =

∫

∞

0

e−ttx−1dt,

and has the properties

Γ(x + 1) = xΓ(x),

Γ(n + 1) = n! if n is a positive integer.

Now, technically the gamma function is only here defined for values of
x > 0. However, we can extend the definition of the gamma function to
negative values that are not integers using the relation Γ(x + 1) = xΓ(x).
With the aid of the gamma function we define the Bessel functions of the
first kind of order p as:

Jp(x) =
∞

∑

m=0

(−1)m

m!Γ(p + m + 1)

(x

2

)2m+p

.
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If p is not a negative integer, then the solution to Bessel’s equation can
be written as:

y(x) = c1Jp(x) + c2J−p(x).

If p is a positive integer then we only get one solution from our Frobe-
nius series method, and we have to use the reduction of order method to
find our second solution. This second solution is called a Bessel function
of the second kind of integral order, and is given by:

Yn(x) =
2

π

(

γ + ln
(x

2

))

−
1

π

n−1
∑

m=0

2n−2m(n − m − 1)!

m!xn−2m
−

1

π

∞
∑

m=0

(−1)m(Hm + Hm+n)

m!(m + n)!

(x

2

)n+2m

,

where γ is the Euler-Mascheroni constant2 and Hn represents the sum
of the first n terms in the harmonic series. Yeah, deriving this is a pain,
and I don’t expect you to memorize it, or even use it. I just wanted you to
see it. If p is an integer n then the solution to Bessel’s equation is:

y(x) = c1Jn(x) + c2Yn(x).

Bessel Function Identities

Like trigonometric functions, Bessel functions satisfy a number of use-
ful identities. In particular, the following identities can be derived using
termwise differentiation and then a little algebra:

2Whether this constant is irrational (it probably is) is still an open question in mathe-
matics.
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J ′

p(x) = Jp−1(x) −
p

x
Jp(x),

J ′

p(x) =
p

x
Jp(x) − Jp+1(x),

Jp+1(x) =
2p

x
Jp(x) − Jp−1(x),

Jp−1(x) =
2p

x
Jp(x) − Jp+1(x).

Example - Express the function J3(x) in terms of the functions J0(x) and
J1(x).

Solution - If we twice apply the identities above we obtain:

J3(x) =
4

x
J2(x) − J1(x) =

4

x

(

2

x
J1(x) − J0(x)

)

− J1(x) =

−
4

x
J0(x) +

(

8

x2
− 1

)

J1(x).

With similar manipulations we can express Jn(x) for any positive inte-
ger n in terms of J0(x) and J1(x).

Notes on Homework Problems

We’ve spent this section, really, only solving one differential equation! So,
there aren’t a lot of differential equations to solve in this homework. In-
stead, the homework for this section, like the section itself, if about explor-
ing Bessel functions.

Problem 8.5.1 asks you to differentiate the Bessel function J0(x) termwise
to find a relation between the function’s derivative and the function J1(x).

Problem 8.5.5 asks you to express J4(x) in terms of J0(x) and J1(x). It’s
very similar to the example problem above.

Problem 8.5.6 asks you to derive the recursion formula we used to de-
fine Bessel functions. Not too bad.
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Problems 8.5.13 and 8.5.16 require that you use the Bessel function
identities to express certain integrals of Bessel functions in terms of the

integral

∫

J0(x). This integral cannot be simplified further, but it has been

studied in substantial depth.
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