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Today we’re going to examine how we find power series solutions to
ordinary differential equations of the form

A(x)y′′ + B(x)y′ + C(x)y = 0.

Now, as we saw in the second example from our last lecture, we’re
not always able to find a solution to a differential equation of this form.
Today, we’re going to focus on a situation where we know we can find a
solution. In particular, around a point a where P (x) = B(x)/A(x), and
Q(x) = C(x)/A(x) are “analytic”. Such a point a is called an ordindary
point.

Today’s lecture corresponds with section 8.2 from the textbook. The
assigned problems for this section are

Section 8.2 - 1, 7, 14, 17, 32

Series Solutions Near Ordinary Points

Recall that a function f(x) is analytic at a point x = a if f(x) is equal to a

power series f(x) =
∞

∑

n=0

cnx
n for all values of x around a.

Suppose we have a second-order linear differential equation of the
form
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A(x)y′′ + B(x)y′ + C(x)y = 0,

where A(x), B(x), and C(x) are analytic at x = a. If the functions
P (x) = B(x)/A(x) and Q(x) = C(x)/A(x) are also analytic at x = a, then
the differential equation has two linearly independent power series solu-
tions of the form

y(x) =
∞

∑

n=0

cn(x − a)n.

The radius of convergence of any such series is at least as large as the
distance from a to the nearest (real or complex) singular point of the dif-
ferential equation.

Note that polynomials are always analytic. If A(x), B(x), and C(x) are
polynomials, then P (x) = B(x)/A(x), Q(x) = C(x)/A(x) will be analytic
at x = a if A(a) 6= 0.

Now, it could be the case that A(a) = 0, but P (x) is still analytic at
x = a. For example,

P (x) =
sin x

x
= 1 − x2

3!
+

x4

5!
− · · ·

is considered analytic at x = 0.1 But, for most of the problems we’ll be
dealing with, the functions A(x), B(x), and C(x) will be polynomials, and
the only possible problem points are where A(x) = 0.

1The book doesn’t do a great job of explaining this. Really, the function B(x)/A(x)
would not be defined at x = a, and so would not be analytic at x = a. However, there
could be a well-defined value for P (a) that would make P (x) analytic at x = a, and so we
essentially “fill in” that point. Yeah, it’s confusing, and explaining exactly what’s going
on in detail would take us too far afield, so don’t worry too much about it for now. If you
take a more advanced class, it will be explained.
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Example - Find a general solution in powers of x to the differential equa-
tion

(x2 + 2)y′′ + 4xy′ + 2y = 0.

Solution - We assume our solution is analytic of the form

y(x) =
∞

∑

n=0

cnx
n.

Differentiating this, and then doing so again, we get:

y′(x) =
∞

∑

n=0

ncnx
n−1,

y′′(x) =
∞

∑

n=0

n(n − 1)cnx
n−2.

Plugging these relations into our differential equation gives us:

∞
∑

n=2

n(n − 1)cnx
n +

∞
∑

n=2

2n(n − 1)cnx
n−2 +

∑

n=1

4ncnx
n +

∞
∑

n=0

2cnx
n = 0.

The x0 term in the power series on the left will have coefficient 4c2+2c0,
and so (after we divide by 2) the identity principle gives us

2c2 + c0 = 0.

The x1 term in the power series will have coefficient 12c3 + 6c1, and so
(after we divide by 6) the identity principle gives us

2c3 + c1 = 0.
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Now for the xn terms, where n ≥ 2, if we shift the second sum above
by 2 we get:

∞
∑

n=2

(n(n − 1)cn + 2(n + 2)(n + 1)cn+2 + 4ncn + 2cn)xn.

Again by the identity principle we must have

n(n − 1)cn + 2(n + 2)(n + 1)cn+2 + 4ncn + 2cn =
2(n + 2)(n + 1)cn+2 + (n + 2)(n + 1)cn = 0.

From this we get 2cn+2 + cn = 0 for all n ≥ 2, which we note also
happens to be what we got for n = 0 and n = 1.

So, for the even coefficients we have

c0 = c0,

c2 = −c0

2
,

c4 = −c2

2
=

c0

22
,

...

and, in general,2

c2n =
(−1)n

2n
c0.

Using idential reasoning we get for the odd terms:

c2n+1 =
(−1)n

2n
c1.

2You could formally prove this using induction without too much trouble.
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From these we get our general solution:

y(x) = c0

∞
∑

n=0

(−1)n

2n
x2n + c1

∞
∑

n=1

(−1)n

2n
x2n+1.

Now, at this point we’re done, except we should mention if we can
what the radius of convergence of this solution is. One way to do this is to
note that

∞
∑

n=0

(−1)n

2n
x2n =

∞
∑

n=0

(−x2

2

)n

is a geometric series. It will converge for
∣

∣

∣

−x
2

2

∣

∣

∣
< 1, or in other words

for |x| <
√

2. If |x| <
√

2 the above series can be written in closed form as:

∞
∑

n=0

(−x2

2

)n

=
1

1 + x2

2

=
2

2 + x2
.

Applying this to both the series solutions above we get:

y(x) =
2c0

2 + x2
+

2c1x

2 + x2
,

with radius of convergence |x| <
√

2.

We note finally that all our coefficient functions are polynomials, so
the only singular points will be where x2 + 2 = 0. This will happen when
x = ±

√
2i. The distance from the origin, x = 0, to either of these points

is
√

2, so the radius of convergence must be at least
√

2. Turns out it is, in
fact,

√
2.
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Example - Find a general solution in powers of x to the differential equa-
tion

y′′ + x2y′ + 2xy = 0.

Solution - Just as in the previous example we assume our solution is a
power series, differentiate it, and plug the series and its derivatives into
the differential equation. If we do this we get

∞
∑

n=2

n(n − 1)cnx
n−2 +

∞
∑

n=1

ncnx
n+1 +

∞
∑

n=0

2cnx
n+1 = 0.

The x0 coefficient will be 2c2, and by the identity principle we get 2c2 =
0.

The x1 coefficient will be 6c3 + 2c0, and by the identity principle we get
6c3 + 2c0 = 0.

The xk terms, for k ≥ 2, will be (shifting the first sum over by 3):

∞
∑

n=1

((n + 3)(n + 2)cn+3 + ncn + 2cn)xn+1.

Again, by the identity principle, we get

(n + 3)(n + 2)cn+3 + (n + 2)cn = 0,

for n ≥ 1. The x1 coefficient tells us this relation is valid even for n = 0,
and the x0 coefficient tells us c2 = 0. From these relations we get

c0 = c0,

c3 = −c0

3
,

c6 = −c3

6
=

c0

3 × 6
,

...
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and, in general,

c3n =
(−1)nc0

3nn!
.

If we apply the same reasoning to the 3n + 1 class of terms we get

c3n+1 =
(−1)nc1

1 × 4 × 7 × · · · × (3n + 1)
.

All the c3n+2 terms are 0. So, we get the general solution

y(x) = c0

∞
∑

n=0

(−1)n

3nn!
x3n + c1

∞
∑

n=0

(−1)n

1 × 4 × · · · × (3n + 1)
x3n+1.

This solution will be valid (convergent) everywhere. We could prove
this without too much bother, or we could just note that all the coefficient
functions in our ODE are polynomials, and the leading coefficient function
is constant, and so there are no singular points. Therefore, the radius of
convergence of the power series solution must be infinite.

Notes on Homework Problems

Problems 8.2.1, 8.2.7, and 8.2.14 are all problems in the same vein as the
example problems from these lecture notes. Good for practice. Problem
8.2.17 is similar, only initial conditions are specified, so the initial coeffi-
cients for the power series will be determined.

Problem 8.2.32 is more complicated. It walks you through a proof for
establishing a famous formula used in calculating polynomials called Leg-
endre polynomials. This is a worthwhile problem, but it’s kind of long,
and won’t be graded, so make sure you’ve got the first four problems be-
fore you tackle this one.
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