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So far in this course we’ve focused almost exclusively on solving lin-
ear differential equations with constant coefficients. But these are, to say
the least, not all the differential equations that are out there. For exam-
ple, a differential equation that is encountered very frequently in applied
mathematics is Bessel’s equation of order n:

x2y′′ + xy′ + (x2 − n2)y = 0.

This is a linear differential equation, but its coefficient functions are
definitely not all constants. We’d like a method for solving this type of
differential equation.

Such a method exists, and it’s very powerful. It involves representing
the solution as a power series1, and then figuring out what this power
series is. As I said, this method is very powerful, but it can require some
work. Fair warning.

This lecture corresponds with section 8.1 from the textbook. The as-
signed problems are:

Section 8.1 - 2, 8, 13, 21, 25

1Actually, for Bessel’s equation, a Frobenius series. But, we’ll get into that later.

1



Introduction and Review of Power Series

A power series is an infinite series of the form:

∞
∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · ·

If a = 0 then we call it a power series in x:

∞
∑

n=0

cnx
n = c0 + c1x + c2x

2 + · · ·

We will confine ourselves mainly to power series in x, but every gen-
eral property of power series in x can be converted to a general property
of power series in (x − a).

We say a power series converges on the interval I provided that the
limit

∞
∑

n=0

cnxn = lim
N→∞

N
∑

n=0

cnxn

is defined for all x ∈ I . In this case the sum

f(x) =

∞
∑

n=0

cnx
n

is defined on I , and we call the series a power series representation of the
function f on I .

Some common power series representations are:
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ex =
∞

∑

n=0

xn

n!
= 1 + x +

x2

2!
+ · · ·

sin x =
∞

∑

n=0

(−1)nx2n+1

(2n + 1)!
= x −

x3

3!
+

x5

5!
− · · ·

1

1 − x
=

∞
∑

n=0

xn = 1 + x + x2 + · · ·

The first two series converge for all x, while the third, called the geo-
metric series, only converges for |x| < 1.

The Power Series Method

The power series method for solving a differential equation consists of sub-
stituting the power series

y =
∞

∑

n=0

cnx
n

into the differential equation, and then attempting to determine what
the coefficients c0, c1, c2, . . . must be in order for the power series to satisfy
the differential equation.

In solving these differential equations, there are two very important
theorems:

Theorem - Termwise Differentiation of Power Series

If the power series representation

f(x) =
∞

∑

n=0

cnx
n = c0 + c1x + c2x

2 + · · ·

of the function f converges on the open interval I , then f is differen-
tiable on I , and
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f ′(x) =
∞

∑

n=1

ncnxn−1 = c1 + 2c2x + 3c3x
2 + · · ·

at each point of I .

The other important theorem is:

Theorem - Identity Principle

If

∞
∑

n=0

anxn =
∞

∑

n=0

bnx
n

for every point x in some open interval I , then an = bn for all n ≥ 0.

In particular, if
∑

anx
n = 0 for all x in some open interval, it follows

from the identity principle that an = 0 for all n ≥ 0.

Now, if we have a power series solution to a differential equation, an
important question is the interval upon which the series converges. A
useful test for determining this interval is the following:

Theorem - Radius of Convergence

Given the power series
∑

cnx
n, suppose that the limit

ρ = lim
n→∞

∣

∣

∣

∣

cn

cn+1

∣

∣

∣

∣

exists (ρ is finite) or is infinite. Then

(a) If ρ = 0, then the series diverges for all x 6= 0.

(b) If 0 < ρ < ∞, then
∑

cnxn converges if |x| < ρ and diverges if |x| > ρ.

(c) If ρ = ∞, then the series converges for all x.

The number ρ is called the radius of convergence of the power series
∑

cnx
n.
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Let’s see how the power series method works with a few examples.

Example - Solve the differential equation y′ = y.

Solution - If we make the substitution

y(x) =

∞
∑

n=0

cnxn

we get the relation

∞
∑

n=1

ncnx
n−1 =

∞
∑

n=0

cnx
n.

We can rewrite this as:

∞
∑

n=1

ncnx
n−1 −

∞
∑

n=0

cnx
n = 0.

If we shift the sum on the left by 1 we can combine the two sums to get:

∞
∑

n=0

((n + 1)cn+1 − cn)xn = 0.

The identity principle tells us we must have the relations

(n + 1)cn+1 − cn = 0.

So, we have the recurrence relation

cn+1 =
cn

n + 1
.

The first few terms are:
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c0 = c0,

c1 =
c0

1
,

c2 =
c1

2
=

c0

1 × 2
,

c3 =
c2

3
=

c0

1 × 2 × 3
=

c0

3!
,

and, in general, cn =
c0

n!
.

So,

y(x) = c0

∞
∑

n=0

xn

n!
= c0e

x.

But, we already knew that, didn’t we!

Example - Solve the differential equation x2y′ = y − x − 1.

Solution - Again, we substitute the solution

y(x) =
∞

∑

n=0

cnxn

into the differential equation. Doing this gives us the relation

∞
∑

n=1

ncnxn+1 = (c0 − 1) + (c1 − 1)x +

∞
∑

n=2

cnx
n.

The coefficients in front of xk for all k must be equal, and so we get
c0 = c1 = 1, and the series equality

∞
∑

n=1

ncnx
n+1 −

∞
∑

n=2

cnx
n = 0.
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If we shift the sum on the left by 1 and the sum on the right by 2 we get

∞
∑

n=0

((n + 1)cn+1 − cn+2)x
n+2 = 0.

So, this gives us cn+2 = (n + 1)cn+1. The first few terms are:

c2 = 1 · c1 = c1,

c3 = 2 · c2 = (2 × 1)c1,

c4 = 3 · c3 = (3 × 2 × 1)c1,

and, in general, cn = (n − 1)!c1.

So, as c1 = 1, our solution is

y(x) = 1 + x +
∞

∑

n=2

(n − 1)!xn.

Hmmm... something fishy here. Let’s look at the radius of convergence
for this series.

lim
n→∞

∣

∣

∣

∣

(n − 1)!

n!

∣

∣

∣

∣

= lim
n→∞

1

n
= 0.

So, the series diverges(!) for all values of x outside x = 0. What does
this mean? It means our differential equation does not have a convergent
power series solution of the assumed form.2 Lesson - always check for
convergence.

2Not too surprising, as the differential equation y
′ −

y

x2
+

x + 1

x2
= 0 is not defined at

x = 0.
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Example - Solve the differential equation y′′ + y = 0.

Solution - Yet again, we make the substitution

y(x) =
∞

∑

n=0

cnx
n.

Making this substitution we get the equation

∞
∑

n=2

n(n − 1)cnxn−2 +

∞
∑

n=0

cnx
n = 0.

Shifting the sum on the left by 2 we get the relation

∞
∑

n=0

((n + 2)(n + 1)cn+2 + cn)xn = 0.

From the identity principle this gives us

cn+2 = −
cn

(n + 1)(n + 2)
.

The terms will break up into odd and even parts3, and the relations
we’ll get are:

c2k =
(−1)kc0

(2k)!
,

and

c2k+1 =
(−1)kc1

(2k + 1)!
.

So, our solution will be:

3Just as we’ve done before, just take the first few terms and look for patterns...
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y(x) = c0

∞
∑

n=0

(−1)nx2n

(2n)!
+ c1

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
.

We recognize the first summation as the cosine function, and the sec-
ond summation as the sine function. In fact, this is how we could define
the cosine and sine functions, in terms of the power series that satisfies a
given differential equation with some set initial conditions. This is, in fact,
how many famous functions in applied mathematics come about.

Notes on Homework Problems

Problems 8.1.2, 8.1.8, and 8.1.13 ask you to solve differential equations us-
ing the power series method. Pretty much what we’ve done in the exam-
ple problems from these notes.

Problem 8.1.21 is similar to the first three problems, and similar to
the example problems from these notes, except you’re asked to take into
account specified initial conditions. So, the unknown constants take on
known values.

Problem 8.1.25 is lots of fun. It also, although it doesn’t mention this
in the property, relates to a connection between the Fibonacci numbers are
the famous “golden ratio”. You may remember this from The Da Vinci
Code.
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