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The major topic of calculus II was the study of integrals and how we
integrate functions. Well, it turns out that finding an integral is actually
solving a special type of differential equation.

We’re going to talk today about the form of these differential equations,
how they come up, and how we can extract some general ideas about dif-
ferential equations based upon these (relatively) simple ones.

Today’s lecture corresponds with section 1.2 from the textbook. The
assigned problems from this section are:

Section 1.2 - 1, 6, 11, 15, 27, 35, 43

Note that I’ve assigned a fair number of these problems because they’re
pretty easy and it’s good practice for harder stuff later on.

Integrate Your Way to Wealth and Happiness, or at Least a

Solution

If we have a first-order differential equation of the form

dy

dx
= f(x, y)
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then it takes a particularly simple form if f(x, y) can be written as just
a function of x, so f(x). Then we have an equation of the form

dy

dx
= f(x).

To solve this for y(x) we just need to integrate both sides of the equation

y(x) = F (x) + C

where C is an arbitrary constant and F (x) is a function such that F ′(x) =
f(x). We usually choose F (x) so that F (0) = 0.

If all we’re given is a differential equation, then this is as far as we can
go. However, if we’re given the value of y(x) at a point, say y(x0) = y0,
then we can solve for C:

C = y0 − F (x0)

to get a unique solution to our initial value problem. It’s the one and only
solution satisfying our differential equation and y(x0) = y0.

Example - Find a function satisfying the differential equation

dy

dx
= (x − 2)2

with the initial condition y(2) = 1.

Solution - The antiderivative of (x − 2)2 is
(x − 2)3

3
, and therefore

y(x) =
(x − 2)3

3
+ C.

If we plug in x = 2 we get y(2) = C. So, if y(2) = 1 we have C = 1, and
a function satisfying the above differential equation with the given initial
condition is:

2



y(x) =
(x − 2)3

3
+ 1.

If we have a second-order differential equation of the form

d2y

dx2
= f(x)

then if we integrate both sides of the equation once we get

dy

dx
= F (x) + C1,

and if we integrate again we get

y(x) =

∫
F (x)dx + C1x + C2.

This solution has two unknown constants. If we know y(x0) and y′(x0)
then we can solve for C1 and C2. So, for a second-order differential equa-
tion there are two unknown constants, and we need two initial conditions.

This is a general phenomonon. We’ll find that, generally speaking, the
solution to an n-th order differential equation will require n initial condi-
tions to specify a particular solution.

Example - What is the solution to the differential equation

d2y

dx2
= 3

if y′(2) = 4 and y(2) = 7?

Solution - If we integrate the above equation once we get:

y′(x) = 3x + C1.
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We know y′(2) = 4, and so 4 = 3(2) + C1, which means C1 = −2. This
gives us the equation

dy

dx
= 3x − 2.

Integrating this equation we get:

y(x) =
3

2
x2

− 2x + C2.

We know y(2) = 6 − 4 + C2 = 7, and so C2 = 5. Therefore, our solution
is:

y(x) =
3

2
x2

− 2x + 5.

Velocity and Acceleration

Newton’s second law of motion states that the net force upon an object is
equal to the object’s mass multiplied by its acceleration. Acceleration is
the rate of change of velocity, which is itself the rate of change of position.

So, if we represent the accelration of an object at time t as a(t), the
velocity at time t as v(t), and the position at time t as x(t), then we have
the relations;

dx

dt
= v(t),

dv

dt
= a(t),

and therefore

d2x

dt2
= a(t).
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So, acceleration is the second derivative of position with respect to
time.

If an object is experiencing constant acceleration a then

a(t) = a,

and therefore its velocity will be

v(t) =

∫
a = at + C1.

If the velocity at time t = 0 is v0, then we have

v(t) = at + v0.

If we then integrate this again to get position we get

x(t) =
1

2
at2 + v0t + C2.

If the position at time t = 0 is x0, then our position function is

x(t) =
1

2
at2 + v0t + x0.

Example - At noon a car starts from rest at point A and proceeds at
constant acceleration along a straight road toward point C, 35 miles away.
If the constantly accelerated car arrives at C with a velocity of 60 mi/h, at
what time does it arive at C?

Solution - The car moves at a constant acceleration a, and when it ar-
rives at C its velocity is 60 mi/h. So, if we set t = 0 to be noon, and say t∗
is the arrival time, we have:

v(t∗) = at∗ = 60.
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So, we have a =
60

t∗
. Now, if we say x = 0 at point A, then the total

distance traveled at time t∗ will be:

x(t∗) =
1

2
at2

∗
= 35.

If we plug in a = 60

t∗
we get:

30t∗ = 35,

and so

t∗ =
35

30
=

7

6
hours.

So, the arrival time is 1:10 PM.

Notes On The Homework Problems

The first five problems (1.2.1, 1.2.6, 1.2.11, 1.2.15, 1.2.27) are all either sim-
ple integration problems or simple kinematics problems. Shouldn’t be too
hard.

The sixth problem (1.2.35) asks you to derive a formula for how fast
a stone hits the ground when it’s dropped from a given height. Not too
hard, but fun and interesting to do.

The seventh problem (1.2.43) is for you science fiction fans. Note that
the answer you get should be a very, very long distance. However, almost
all the stars you see in the night sky are much farther away than your
answer!
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