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In our last lecture I introduced the Laplace transform, and we dis-
cussed a few of its properties. All nice and good, you may be thinking,
but what does it have to do with solving differential equations? I’m so
glad you asked. Today, we’ll learn about a few more properties of Laplace
transforms, and how these properties can be used in figuring out solutions
to differential equations.

This lecture corresponds with section 7.2 of the textbook. The assigned
problems from this section are:

Section 7.2 - 1, 4, 15, 20, 29

Transformation of Initial Value Problems

Laplace transforms are going to allow us to take differential equations
and turn them into algebraic equations. We can then solve these algebraic
equations to find solutions to our differential equations. It’s pretty slick.

But, before we get into this, we need to establish one very important
property of the Laplace transform.

Theorem - Suppose that the function f(t) is continuous and piecewise
smooth (which means smooth except at finite isolated points) for t ≥ 0
and is of exponential order as t → ∞. Then for some c ∈ R the Laplace
transform L(f ′(t)) exists for s > c, and
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L(f ′(t)) = sL(f(t)) − f(0) = sF (s) − f(0), s > c.

From this it follows by induction that:

L(f (n)(t)) = snF (s) − sn−1f(0) − sn−2f ′(0) − · · · − sfn−2(0) − fn−1(0),
s > c.

This is huge! What it means is that not only can we take Laplace trans-
forms of functions, we can take Laplace transforms of linear differential
equations!1

Example - Use Laplace transforms to solve the initial value problem:

x′′ + 9x = 0; x(0) = 3; x′(0) = 4.

1Great Scott!

2



Let’s see that again.

Example - Find the solution to the initial value problem below using
Laplace transforms:

x′′ + 8x′ + 15x = 0; x(0) = 2; x′(0) = 3
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Now, just as with differentiation, we have a relation between the Laplace
transform of a function and the Laplace transform of the integral of the
function.

Theorem - If f(t) is a piecewise continuous function for t ≥ 0 and
satisfies the condition of exponential order, then

L

(
∫

t

0

f(τ)dτ

)

=
1

s
L(f(t)) =

F (s)

s

for s > c. Equivalently,

L−1

(

F (s)

s

)

=

∫

t

0

f(τ)dτ .

Now, these differentiation and integration rules can be exploited to
make the calculation of some Laplace transforms much easier.

Example - Find L(t sin kt).
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Notes on Homework Problems

Problems 7.2.1 and 7.2.4 involve solving linear differential equation using
Laplace transoforms in a manner very similar to the examples from these
notes.

Problem 7.2.15 is more difficult, and involves a system of two differ-
ential equations. You’ll want to first write this as a system involving the
Laplace transforms, and then solve this system for each Laplace transform
individually, and then take the inverse Laplace transforms.

For problem 7.2.20 think partial fraction decomposition.

Problem 7.2.29 is very similar to the example problem above where we
derive the Laplace transform of t sin (kt).
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