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So far we’ve examined some systems of first-order differential equa-
tions, and we’ve learned how to solve those systems by using the method
of elimination. Using this method, we reduce a system to a single higher-
order differential equation that we then know how to solve using the
methods from chapter 3. We’ve also seen how to rewrite a higher-order
differential equation as a system of first-order differential equations. Wouldn’t
it be nice if there were a way to solve a system of first-order differential
equations without converting the system into a higher-order differential
equation?

Well, for once, the universe is nice. There is a method for solving
systems of first-order differential equations, and it involves finding those
eigenvalues you got to know and love from math 2270. Today we’ll learn
about this method.

Today’s lecture corresponds with section 5.2 from the textbook. The
assigned problems from this section are:

Section 5.2 - 1, 9, 15, 21, 39

The Eigenvalue Method for Homogeneous Sys-

tems

Suppose we have a system of first-order ODEs with constant coefficients:

x′

1 = a11x1 + a12x2 + · · ·+ a1nxn
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x′

2 = a21x1 + a22x2 + · · ·+ a2nxn

...
x′

n = an1x1 + an2x2 + · · ·+ annxn

We know that any solution (general theory) can be written as the linear
combination:

x(t) = c1x1 + · · · + cnxn

where the xi are linearly independent solutions of the system of ODEs.
So, what we want to do is figure out how to find these linearly indepen-
dent solutions.

The Exponential “Guess”

By analogy with the constant coefficient case for homogeneous ODEs, we
can “guess” a solution of the form:

x(t) =







v1
...

vn






eλt = veλt

where the vi and λ are appropriate scalar constants.

Now, if we write our system as:

x′ = Ax,

then if x = veλt we get:

λveλt = Aveλt

⇒ λv = Av

which is the “eigenvalue equation” from linear algebra.
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The Eigenvalue Equation

We begin with a theorem from linear algebra. Namely, that Av = λv for
some v 6= 0 if and only if det(A − λI) = 0. This theorem determines the
possible values of λ.

In general

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

gives us a “characteristic”1 nth-order (in λ) polynomial whose roots are
the acceptable values of λ.

Well, if we get n distinct eigenvalues, as these roots are called, then
we get n linearly independent solutions, and we’re done. Now, as you
might imagine, these solutions may be complex conjugates, a situation
we’ll discuss today. We’ll delay what we do if any of the eigenvalues are
repeated until next time.

All Real Roots

If all the roots are real and distinct, then the problem is as easy as it can be.
How this is handled is best seen in the context of an example.

Example - Find the general solution of:

x′ =

(

2 3
2 1

)

x

1The German term “eigen” roughly translates, in this context, as “characteristic”.
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Room for the solution to the example problem.
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Complex Eigenvalues

Any complex eigenvalue will also have its conjugate as an eigenvalue:

(A − λI)v = 0

⇒ (A − λI)v = 0

So, v is a corresponding eigenvector to the eigenvalue λ. Now, if λ is
complex then we have:

x(t) = veλt = ve(p+qi)t = (a + bi)ept(cos (qt) + i sin (qt))

which gives us,

x(t) = ept(a cos (qt) − b sin (qt)) + iept(b cos (qt) + a sin (qt))

Now, as 0 = 0 + i0, both the real term and complex term here must be
a solution to the system of ODEs, and these are the same pair of solutions
we’ll get from the eigenvalue’s conjugate. So, our two linearly indepen-
dent solutions, arising from the eigenvalue and its conjugate, are the real
and imaginary parts above.

Example - Find the solution to the given system of ODEs:

x′

1 = x1 − 2x2

x′

2 = 2x1 + x2

x1(0) = 0, x2(0) = 4
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Room for the solution to the example problem.
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Notes on Homework Problems

For problems 5.2.1, 5.2.9. amd 5.2.15, you’re solving eigenvalue problems
like the examples above. The problems ask you to construct a direction
field and plot typical solution curves. You don’t need to spend too much
time on this part. A simple sketch is sufficient.

For problem 5.2.21 you’re still solving an eigenvalue problem, but this
time it’s a 3 × 3 system instead of a 2 × 2 system. Same methods apply,
although finding the eigenvalues is a little more work. On the plus side,
you don’t have to graph any direction fields!

For problem 5.2.39 you want to solve the largest system you’ll see in
this class, a 4 × 4 system. As you might imagine, calculating the determi-
nant and finding its roots for a 4 × 4 system is in general a hard problem,
but in this case it’s not so bad. The matrix has a lot of zeros, a condition
referred to in mathematics as being “sparse”. Calculating determinants
of sparse matrices is much easier than calculating determinants of general
matrices.
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