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In today’s lecture we’re going to examine, in detail, a physical system
whose behavior is modeled by a second-order linear ODE with constant
coefficients. We’ll examine the different possible solutions, what deter
mines these solutions, and what these solutions mean as far as the behav
ior of the system is concerned.

The assigned problems for this section are:

Section 3.4 - 1, 5, 18, 21

Simple Mechanical Systems and the Differential Equations
that Love Them

Today we’re going to examine a fairly simple mechanical system in detail,
and look closely at its possible solutions.
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We have a mass on a spring connected to a dashpot. The forces on the
mass are:

The force from the spring:

FS = −kx.

The force from the dashpot:

FR = −cv.

An external driving force:

FE = f(t).

Today we’ll assume that f(t) = 0. The inhomogeneous, f(t) 6= 0, situa-
tion we’ll examine in detail in a couple lectures.

According to Newton’s second law:

m
d2x

dt2
= −c

dx

dt
− kx.

Or, after a little algebra,

m
d2x

dt2
+ c

dx

dt
+ kx = 0.

This is a second-order linear homogeneous ODE with constant coeffi-
cients. We can rewrite this as:1

d2x

dt2
+

c

m

dx

dt
+

k

m
x = 0

Before solving this, let’s take a look at another basic mechanical system;
the simple pendulum.

1Just dividing everything by the mass m.
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Bad Drawing:

L

We can apply the conservation of energy to the pendulum to derive the
differential equation:

1 2/dON2
rngy+mL =z

If we note that y L(1 — (050) we get:

rngL(1 — cox0) + mL2 () c.

Differentiating both sides of this we get the equation:

dO , /dON /d20’\mqL sin O-- + mL --) 0.

Dividing through by the common factors we get:

(120 q
+ smO = 0.

This is not a linear ODE. However, if we assume 0 is small we can use
the approximation sin 0 0 to get:
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d2θ

dt2
+

g

L
θ = 0.

This is, essentially, the same equation we saw before with the mass-
spring-dashpot system if we set c = 0. A fundamental idea in physics
is that the same equations have the same solutions, and so the behavior
we witness for the mass-spring-dashpot system will be analogous to the
behavior of the pendulum.

The Solutions and What They Mean

The differential equation for the pendulum above has the solutions:

θ(t) = c1 cos

(
√

g

L
t

)

+ c2 sin

(
√

g

L
t

)

.

If we choose:

A =
√

c2

1
+ c2

2

and

cos φ =
c1

A
, sin φ =

c2

A

then

θ(t) = A

(

cos φ cos

(
√

g

L
t

)

+ sin φ sin

(
√

g

L
t

))

.

If we use the relation:

cos (θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

we can rewrite θ(t) as:

θ(t) = A cos

(
√

g

L
t − φ

)

.
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This is the simplified equation for simple harmonic motion. We call the
terms:

A = Amplitude,

φ = Phase shift,
√

g

L
= Angular frequency = ω.

From these we define the terms:

Frequency : f =
ω

2π
,

Period : T =
1

f
=

2π

ω
.

Example - Most grandfather clocks have pendulums with adjustable
lengths. One such clock loses 10 min per day when the length of its pen-
dulum is 30 in. With what length pendulum will this clock keep perfect
time?

Solution - Let k be the expected number of periods per day. So,

kTc = (24hours)((60min/hour) = 1440min,

where Tc is the correct period. We have:

kT = k

(

2π

ω

)

= 1, 450min.

So,

T

Tc

=
1450

1440
=

2π√
g

30in

2π√
g

L

=

1
1

√

30

1
1

√

L

=

√
30√
L

.
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So,

L = (30in)

(

1440

1450

)2

= 29.59in.

Now, if we look again at the mass-spring-dashpot system we examined
at the beginning of this lecture we note that we can rewrite the differential
equation as:

x′′ + 2px′ + ω2

0
x = 0

with

ω0 =

√

k

m
> 0, and p =

c

2m
> 0.

If we use the quadratic formula to solve the characteristic equation for
this ODE we get:

−2p ±
√

(2p)2 − 4ω2

0

2
= −p ±

√

p2 − ω2

0
.

From this we get three fundamental possibilities, depending on the
sign of the discriminant p2 − ω2

0
:

Case 1: Overdamped -

This case occurs when

p > ω0 a.k.a. c2 > 4mk a.k.a. the discriminant is positive.

In this situation we have 2 real negative roots, and our solution is of
the form:

x(t) = c1e
r1t + c2e

r2t.
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Some representative graphs of this situation are below. We note that
the solution asymptotically goes to 0 as — oc.

Case 2: Critically Damped

This case occurs when

p = w0 a.k.a. c2 4rnk a.k.a the discriminant is zero.

x

In this situation we have one real negative root of multiplicity two
and our solution is of the form:

(t) t(c + c2t).

Some representative graphs of this situation are below. We note that,
again, the solution asymptotically goes to 0 as t - oc.
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Case 3: Underdamped -

This case occurs when

p <w0 a.k.a. c2 <4km a.k.a. the discriminant is negative.

In this situation we have two complex roots and our solution is of
the form:

x(t) = e_Pt(ci cos (wit) + c2 sin (wit))

where

/ 9
i,/4km_c2

Wi
= 1/W P = 2rn

As explained for the pendulum we can rewrite this solution as:

x(t) = Ce_t cos (wit — a).

A representative graph of this situation is below. We note, again, that
the solution asymptotically approaches 0 as t —* co.2

7

f

2Unless p 0, in which case we have the behavior for the pendulum we examined
earlier.
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Example - Solve the ODE that models the mass-spring-dashpot system
with the parameters:

m =
1

2
, c = 3, k = 4,

x0 = 2, v0 = 0.

Is the system overdamped, critically damped, or underdamped?

Solution - First, we note c2 = 9, while 4mk = 8. So, c2 > 4mk, and
therefore the system is overdamped.

The differential equation modeling the system is:

1

2
x′′ + 3x′ + 4x = 0,

which we can rewrite as:

x′′ + 6x′ + 8x = 0.

The characteristic equation for the ODE above is:

r2 + 6r + 8 = (r + 4)(r + 2).

So, the roots are r = −2, and r = −4. These correspond with solutions
e−4t and e−2t. So, the general solution to the ODE is:

x(t) = c1e
−4t + c2e

−2t.

The derivative of this solution is:

−4c1e
−4t − 2c2e

−2t.
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If we plug in our initial conditions we get:

x(0) = c1 + c2 = 2,

v(0) = −4c1 − 2c2 = 0.

Solving this system gives us c1 = −2 and c2 = 4. So, our solution is:

x(t) = −2e−4t + 4e−2t.

Notes on Homework Problems

There are only four homework problems assigned from this section. The
first, 3.4.1, is a very simple problem where you just plug some numbers
into the period and frequency formulas.

Problem 3.4.5 is an interesting problem examining how the period of
a pendulum changes when gravity decreases as you move away from the
Earth. Note that for the change to be noticeable, you need to move a LONG
way away from the Earth’s surface.

Problems 3.4.18 and 3.4.21 explore different mass-spring-dashpot be-
haviors for different values of the relevant constants. Kind of like the three
cases explored in this lecture.
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