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Section 5.1 - Matrices and Linear Systems

5.1.1 - Let

A =

(

2 −3
4 7

)

B =

(

3 −4
5 1

)

.

Find

(a) 2A + 3B;

(b) 3A − 2B;

(c) AB;

(d) BA.

Solution -

(a) 2A + 3B =

(

4 −6
8 14

)

+

(

9 −12
15 3

)

=

(

13 −18
23 17

)

.

(b) 3A − 2B =

(

6 −9
12 21

)

−

(

6 −8
10 2

)

=

(

0 −1
2 19

)

.

(c) AB =

(

2 −3
4 7

) (

3 −4
5 1

)

=

(

−9 −11
47 −9

)

.

(d) BA =

(

3 −4
5 1

) (

2 −3
4 7

)

=

(

−10 −37
14 −8

)

6=

(

−9 −11
47 −9

)

.
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5.1.7 - For the matrices

A =

(

1 −2
−2 4

)

B =

(

2 4
1 2

)

,

Calculate AB, and then compute the determinants of the matrices A
and B above. Are your results consistent with the theorem to the
effect that

det(AB) = det(A)det(B)

for any two square matrices A and B of the same order?

Solution - We have:

AB =

(

1 −2
−2 4

) (

2 4
1 2

)

=

(

0 0
0 0

)

.

The determinants of A and B are:

det(A) =

∣

∣

∣

∣

1 −2
−2 4

∣

∣

∣

∣

= 1 × 4 − (−2) × (−2) = 0,

det(B) =

∣

∣

∣

∣

2 4
1 2

∣

∣

∣

∣

= 2 × 2 − 4 × 1 = 0.

So, det(AB) = 0 = 0 × 0 = det(A)det(B). Yes, it’s consistent. You can
sleep at night.
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5.1.15 - Write the system below in the form x′ = P(t)x + f(t).

x′ = y + z

y′ = x + z

z′ = x + y

Solution -





x

y

z





′

=





0 1 1
1 0 1
1 1 0









x

y

z



.
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5.1.21 For the system below, first verify that the given vectors are solutions
of the system. Then use the Wronskian to show that they are linearly
independent. Finally, write the general solution of the system.

x′ =

(

4 2
−3 −1

)

x;

x1 =

(

2et

−3et

)

x2 =

(

e2t

−e2t

)

.

Solution - If we plug x1 into the system of equations we get:

x′

1 =

(

2et

−3et

)

,

(

4 2
−3 −1

) (

2et

−3et

)

=

(

2et

−3et

)

.

So, x1 checks out. As for x2 we have:

x′

2 =

(

2e2t

−2e2t

)

,

(

4 2
−3 −1

) (

e2t

−e2t

)

=

(

2e2t

−2e2t

)

.

So, x2 checks out, too. To show they’re linearly independent we cal-
culate the Wronskian:

W (x1, x2) =

∣

∣

∣

∣

2et e2t

−3et −e2t

∣

∣

∣

∣

= −2e3t − (−3e3t) = e3t 6= 0.

So, the solution vectors are linearly independent, and our general
solution can be written as:
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x(t) = c1

(

2
−3

)

et + c2

(

1
−1

)

e2t.
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5.1.27 For the system below, first verify that the given vectors are solutions
of the system. Then use the Wronskian to show that they are linearly
independent. Finally, write the general solution of the system.

x′ =





0 1 1
1 0 1
1 1 0



 x;

x1 = e2t





1
1
1



, x2 = e−t





1
0
−1



, x3 = e−t





0
1
−1



.

Solution - If we plug x1 into the system of equations we get:

x′

1 =





2e2t

2e2t

2e2t



,





0 1 1
1 0 1
1 1 0









e2t

e2t

e2t



 =





2e2t

2e2t

2e2t



.

So, x1 checks out. As for x2 we have:

x′

2 =





−e−t

0
e−t



,





0 1 1
1 0 1
1 1 0









e−t

0
−e−t



 =





−e−t

0
e−t



.

So, x2 checks out, too. Finally, for x3 we have:
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x′

3 =





0
−e−t

e−t



,





0 1 1
1 0 1
1 1 0









0
e−t

−e−t



 =





0
−e−t

e−t



.

So, x3 checks out as well. We have three solution vectors, and for a
complete solution these vectors must be linearly independent, which we
can check using the Wronskian:

W (x1, x2, x3) =

∣

∣

∣

∣

∣

∣

e2t e−t 0
e2t 0 e−t

e2t −e−t −e−t

∣

∣

∣

∣

∣

∣

= 0 + 1 + 0 − (−1) − (−1) − 0 = 3 6= 0.

So, the three solution vectors are linearly independent, and therefore
our general solution can be written as:

x(t) = c1





1
1
1



 e2t + c2





1
0
−1



 e−t + c3





0
1
−1



 e−t.
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The Eigenvalue Method for Homogeneous Sys-

tems

5.2.1 - Apply the eigenvalue method to find the general solution to the
system below. Use a computer or graphing calculator to construct a
direction field and typical solution curves for the system.

x′

1 = x1 + 2x2

x′

2 = 2x1 + x2

Solution - The vector-matrix form of the above first-order system is:

x′ =

(

1 2
2 1

)

x.

The characteristic polynomial of this matrix is:

∣

∣

∣

∣

1 − λ 2
2 1 − λ

∣

∣

∣

∣

= (1 − λ)2 − 4 = λ2 − 2λ − 3 = (λ − 3)(λ + 1).

So, the eigenvalues are λ = 3,−1. The associated eigenvectors are:

For λ = 3:

(

−2 2
2 −2

) (

a

b

)

=

(

0
0

)

,

and we see

(

a

b

)

=

(

1
1

)

works.

For λ = −1:
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(

2 2
2 2

) (

a

b

)

=

(

0
0

)

,

and we see

(

a

b

)

=

(

1
−1

)

works.

So, our general solution is:

x(t) = c1

(

1
1

)

e3t + c2

(

1
−1

)

e−t.
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More room for Problem 5.2.1, if you need it.

c /



5.2.9 - Apply the eigenvalue method to find the particular solution to the
initial value problem below. Use a computer or graphing calcula-
tor to construct a direction field and typical solution curves for the
system.

x′

1 = 2x1 − 5x2

x′

2 = 4x1 − 2x2

x1(0) = 2, x2(0) = 3.

Solution - The vector-matrix form of the above system of equations
is:

x′ =

(

2 −5
4 −2

)

x.

The characteristic polynomial for the matrix is:

∣

∣

∣

∣

2 − λ −5
4 −2 − λ

∣

∣

∣

∣

= λ2 + 16.

The roots of this polynomial are λ = ±4i, and so these are the eigen-
values. The associated eigenvectors will be:

(

2 − 4i −5
4 −2 − 4i

) (

5
2 − 4i

)

=

(

0
0

)

,

so

(

5
2 − 4i

)

for λ = 4i. For λ = −4i the vector

(

5
2 + 4i

)

is an

eigenvector.

Using these eigenvectors and eigenvalues along with equation 5.2.22
from the textbook we get the general solution:
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x(t) = c1

[(

5
2

)

cos (4t) +

(

0
4

)

sin (4t)

]

+

c2

[

−

(

0
4

)

cos (4t) +

(

5
2

)

sin (4t)

]

.

If we plug in x(0) =

(

2
3

)

we get the system:

2 = 5c1

3 = 2c1 − 4c2
.

Solving this for c1 and c2 gives us c1 =
2

5
, c2 = −

11

20
. Plugging these

values in we get the solution to our initial value problem:

x(t) =

(

2
3

)

cos (4t) +

(

−11
4

1
2

)

sin (4t).
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More room for Problem 5.2.9, if you need it.

p iVe C i’e / j

IOIJ/d
(Vej

14



5.2.15 - Apply the eigenvalue method to find the general solution to the
system below. Use a computer or graphing calculator to construct a
direction field and typical solution curves for the system.

x′

1 = 7x1 − 5x2

x′

2 = 4x1 + 3x2

Solution - The vector-matrix form of the above system is:

x′ =

(

7 −5
4 3

)

x.

The characteristic polynomial for the matrix is:

∣

∣

∣

∣

7 − λ −5
4 3 − λ

∣

∣

∣

∣

= (7 − λ)(3 − λ) + 20 = λ2 − 10λ + 41.

We can find the roots of this polynomial using the quadratic equa-
tion:

λ =
10 ±

√

(−10)2 − 4(1)(41)

2
= 5 ± 4i.

So, the eigenvalues are 5 ± 4i. For λ = 5 + 4i a corresponding eigen-
vector is:

(

2 − 4i −5
4 −2 − 4i

) (

5
2 − 4i

)

=

(

0
0

)

.

Using equation 5.2.22 from the textbook we get the general solution:

x(t) = c1e
5t

[(

5
2

)

cos (4t) +

(

0
4

)

sin (4t)

]

+

c2e
5t

[

−

(

0
4

)

cos (4t) +

(

5
2

)

sin (4t)

]

.
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More room for Problem 5.2.15, if you need it.
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5.2.21 - The eigenvalues of the system below can be found by inspection
and factoring. Apply the eigenvalue method to find a general solu-
tion to the system.

x′

1 = 5x1 − 6x3

x′

2 = 2x1 − x2 − 2x3

x′

3 = 4x1 − 2x2 − 4x3

Solution - The vector-matrix format of the above system is:

x′ =





5 0 −6
2 −1 −2
4 −2 −4



 x.

The characteristic polynomial for the matrix is:

∣

∣

∣

∣

∣

∣

5 − λ 0 −6
2 −1 − λ −2
4 −2 −4 − λ

∣

∣

∣

∣

∣

∣

= (5−λ)((−1−λ)(−4−λ)−4)+(−6)(−4− (−1−λ)4) = −λ(λ2 −1).

So, the eigenvalues are λ = 0, 1,−1. Corresponding eigenvectors are:

For λ = 0:





5 0 −6
2 −1 −2
4 −2 −4









6
2
5



 =





0
0
0



.

For λ = 1:
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4 0 −6
2 −2 −2
4 −2 −5









3
1
2



 =





0
0
0



.

For λ = −1:





6 0 −6
2 0 −2
4 −2 −3









2
1
2



 =





0
0
0



.

So, the general solution is:

x(t) = c1





6
2
5



 + c2





3
1
2



 et + c3





2
1
2



 e−t.
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5.2.39 For the matrix given below the zeros of the matrix make its char-
acteristic polynomial easy to calculate. Find the general solution of
x′ = Ax.

A =









−2 0 0 9
4 2 0 −10
0 0 −1 8
0 0 0 1









.

Solution - The characteristic polynomial for the matrix A above is:

∣

∣

∣

∣

∣

∣

∣

∣

−2 − λ 0 0 9
4 2 − λ 0 −10
0 0 −1 − λ 8
0 0 0 1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= (1 − λ)(−1 − λ)(2 − λ)(−2 − λ).

So, there are 4 distinct eigenvalues, λ = 1,−1, 2,−2. Corresponding
eigenvectors are:

For λ = 1:









−3 0 0 9
4 1 0 −10
0 0 −2 8
0 0 0 0

















3
−2
4
1









=









0
0
0
0









.

For λ = −1:









−1 0 0 9
4 3 0 −10
0 0 0 8
0 0 0 2

















0
0
1
0









=









0
0
0
0









.
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For λ = 2:









−4 0 0 9
4 0 0 −10
0 0 −3 8
0 0 0 −1

















0
1
0
0









=









0
0
0
0









.

For λ = −2:









0 0 0 9
4 4 0 −10
0 0 1 8
0 0 0 3

















1
−1
0
0









=









0
0
0
0









.

So, the general solution is:

x(t) = c1









3
−2
4
1









et + c2









0
0
1
0









e−t + c3









0
1
0
0









e2t + c4









1
−1
0
0









e−2t.
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Section 5.4 - Multiple Eigenvalue Solutions

5.4.1 - Find a general solution to the system of differential equations be-
low.

x′ =

(

−2 1
−1 −4

)

x

Solution - The matrix for this system has eigenvalues:

∣

∣

∣

∣

−2 − λ 1
−1 −4 − λ

∣

∣

∣

∣

= λ2 + 6λ + 9 = (λ + 3)2.

We have eigenvalues λ = −3,−3. So, there’s only one eigenvalue,
and it has multiplicity 2. The eigenvectors for this eigenvalue must
satisfy:

(

1 1
−1 −1

)

v1 =

(

0
0

)

.

v1 =

(

1
−1

)

works, and there is no other linearly independent

eigenvector.

We therefore need a length 2 chain of generalized eigenvectors. First,
we calculate:

(

1 1
−1 −1

)2

=

(

0 0
0 0

)

.

So, v2 =

(

1
0

)

works with
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(

1 1
−1 −1

) (

1
0

)

=

(

1
−1

)

= v1.

The general solution is:

x(t) = c1

(

1
−1

)

e−3t + c2

((

1
−1

)

t +

(

1
0

))

e−3t.
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5.4.8 Find a general solution to the system of differential equations below.

x′ =





25 12 0
−18 −5 0
6 6 13



 x

Solution - The eigenvalues for the coefficient matrix are:

∣

∣

∣

∣

∣

∣

25 − λ 12 0
−18 −5 − λ 0
6 6 13 − λ

∣

∣

∣

∣

∣

∣

= (13 − λ)[(25 − λ)(−5 − λ) − (12)(−18)]

= (13 − λ)(λ2 − 20λ + 91) = −(λ − 13)2(λ − 7).

So, the eigenvalues are λ = 7, 13, 13.

For λ = 7 the eigenvector must satisfy:





18 12 0
−18 −12 0
6 6 6



 v =





0
0
0



.

The vector v =





2
−3
1



 works.

For λ = 13 an eigenvector must satisfy:





12 12 0
−18 −18 0
6 6 0



 v =





0
0
0



.
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The linearly independent vectors u =





1
−1
0



 and w =





0
0
1





work.

The general solution is:

x(t) = c1





2
−3
1



 e7t + c2





1
−1
0



 e13t + c3





0
0
1



 e13t.
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5.4.15 - Find a general solution to the system of differential equations be-
low.

x′ =





−2 −9 0
1 4 0
1 3 1



 x

Solution - The eigenvalues of the coefficient matrix are:

∣

∣

∣

∣

∣

∣

−2 − λ −9 0
1 4 − λ 0
1 3 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)[(−2 − λ)(4 − λ) − 1(−9)]

= (1 − λ)(λ2 − 2λ + 1)2 = −(λ − 1)3.

The eigenvalues are λ = 1, 1, 1. There is only one eigenvalue, and it
has multiplicity 3. The eigenvectors for this eigenvalue must satisfy:





−3 −9 0
1 3 0
1 3 0



 v =





0
0
0



.

The linearly independent vectors





3
−1
0



 and





0
0
1



 both work.

So, we need a single length 2 chain. To find this, we calculate the
matrix product:





−3 −9 0
1 3 0
1 3 0









−3 −9 0
1 3 0
1 3 0



 =





0 0 0
0 0 0
0 0 0



.
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The vector v2 =





1
0
0



 is a candidate for the top vector in our chain,

and the corresponding base vector is:





−3 −9 0
1 3 0
1 3 0









1
0
0



 =





−3
1
1



 = v1.

This is a length 2 chain. For the additional length 1 chain we need
an eigenvector that is independent of v1 above, and using our earlier

results we see





0
0
1



 works.

The general solution is:

x(t) = c1





0
0
1



 et + c2





−3
1
1



 et + c3









−3
1
1



 t +





1
0
0







 et.
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5.4.25 - Find a general solution to the system of differential equations be-
low. The eigenvalues of the matrix are given.

x′ =





−2 17 4
−1 6 1
0 1 2



 x; λ = 2, 2, 2.

Solution - An eigenvector for the system must satisfy:





−4 17 4
−1 4 1
0 1 0



 v =





0
0
0



.

The vector





1
0
1



 is the only linearly independent eigenvector that

works. So, we need a length 3 (yikes!) generalized eigenvector. To
find it we calculate:





−4 17 4
−1 4 1
0 1 0





2

=





−1 4 1
0 0 0
−1 4 1



,





−4 17 4
−1 4 1
0 1 0





3

=





0 0 0
0 0 0
0 0 0



.

A good test vector for the top vector of our chain is v3 =





1
0
0



.

With this vector we get:
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−4 17 4
−1 4 1
0 1 0









1
0
0



 =





−4
−1
0



 = v2,





−4 17 4
−1 4 1
0 1 0









−4
−1
0



 =





−1
0
−1



 = v1.

So, the test vector works, and we have a length 3 chain of generalized
eigenvectors. The corresponding general solution is:

x(t) = c1





−1
0
−1



 e2t + c2









−1
0
−1



 t +





−4
−1
0







 e2t +

c3









−1
0
−1





t2

2
+





−4
−1
0



 t +





1
0
0







 e2t.
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5.4.33 - The characteristic equation of the coefficient matrix A of the sys-
tem

x′ =









3 −4 1 0
4 3 0 1
0 0 3 −4
0 0 4 3









x

is

φ(λ) = (λ2 − 6λ + 25)2 = 0.

Therefore, A has the repeated complex conjugate pair 3±4i of eigen-
values. First show that the complex vectors

v1 =









1
i

0
0









v2 =









0
0
1
i









1

form a length 2 chain {v1, v2} associated with the eigenvalue λ =
3 − 4i. Then calculate the real and imaginary parts of the complex-
valued solutions

v1e
λt and (v1t + v2)e

λt

to find four independent real-valued solutions of x′ = Ax.

Solution - First, we verify that the two vectors are a chain:

1Note in the textbook there’s a typo in this vector.
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(A − λI) =









4i −4 1 0
4 4i 0 1
0 0 4i −4
0 0 4 4i









,

(A − λI)v2 =









4i −4 1 0
4 4i 0 1
0 0 4i −4
0 0 4 4i

















0
0
1
i









=









1
i

0
0









= v1,

(A − λI)v1 =









4i −4 1 0
4 4i 0 1
0 0 4i −4
0 0 4 4i

















1
i

0
0









=









0
0
0
0









.

So, it’s a chain. This means we have solutions:

x1 =









1
i

0
0









e(3−4i)t,

x2 =

















1
i

0
0









t +









0
0
1
i

















e(3−4i)t.

Breaking these up into real and imaginary parts we get:

e(3−4i)t = e3t(cos (4t) − i sin (4t)),

Re(x1) =









cos (4t)
sin (4t)

0
0









e3t Im(x1) =









− sin (4t)
cos (4t)

0
0









e3t,
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Re(x2) =









t cos (4t)
t sin (4t)
cos (4t)
sin (4t)









e3t Im(x2) =









−t sin (4t)
−t cos (4t)
− sin (4t)
cos (4t)









e3t.

So, our final solution is:

x(t) = c1









cos (4t)
sin (4t)

0
0









e3t + c2









− sin (4t)
cos (4t)

0
0









e3t +

c3









t cos (4t)
t sin (4t)
cos (4t)
sin (4t)









e3t + c4









−t sin (4t)
t cos (4t)
− sin (4t)
cos (4t)









e3t.
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