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Section 3.8 - Endpoint Problems and Eigenvalues

3.8.1 For the eigenvalue problem

y′′ + λy = 0; y′(0) = 0, y(1) = 0,

first determine whether λ = 0 is an eigenvalue; then find the positive
eigenvalues and associated eigenfunctions.

Solution - First, if λ = 0 then the solution to the differential equation

y′′ = 0

is

y = Ax + B.

From this we get y′ = A, and so if y′(0) = 0 we must have A = 0. This
would mean y = B, and if y(1) = 0 then B = 0. So, only the trivial
solution A = B = 0 works, and therefore λ = 0 is not an eigenvalue.

For λ > 0 the characteristic polynomial for our linear differential
equation is:

r2 + λ = 0,

which has roots r = ±
√
−λ. The corresponding solution to our ODE

will be:

y = A cos (
√

λx) + B sin (
√

λx).

with derivative

y′ = −A
√

λ sin (
√

λx) + B
√

λ cos (
√

λx).
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So, y′(0) = B
√

λ, and therefore if y′(0) = 0 then we must have B = 0,
as λ > 0. So, our solution must be of the form:

y = A cos (
√

λx).

If we plug in y(1) = 0 we get:

y(1) = A cos (
√

λ) = 0.

If A 6= 0 we must have cos(
√

λ) = 0, which is true only if
√

λ =
π

2
+ nπ. So, the eigenvalues are:

λn =

(

π

(

1

2
+ n

))2

, with n ∈ N,

and corresponding eigenfunctions

yn = cos
((π

2
+ nπ

)

x
)

.
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3.8.3 Same instructions as Problem 3.8.1, but for the eigenvalue problem:

y′′ + λy = 0; y(−π) = 0, y(π) = 0.

Solution - If λ = 0 then, as in Problem 3.8.1, our solution will be of
the form:

y = Ax + B.

This means y(π) = Aπ + B = 0, and y(−π) = −Aπ + B = 0. Adding
these two equations we get 2B = 0, which means B = 0. If B = 0
then Aπ = 0, which means A = 0. So, the only solution is the trivial
solution A = B = 0, and therefore λ = 0 is not an eigenvalue.

Now if λ > 0 then again just as in Problem 3.8.1 we’ll have a solution
of the form:

y(x) = A cos (
√

λx) + B sin (
√

λx).

If we plug in our endpoint values we get:

y(π) = A cos (
√

λπ) + B sin (
√

λπ) = 0,

y(−π) = A cos (−
√

λπ) + B sin (−
√

λπ) =

A cos (
√

λπ) − B sin (
√

λπ) = 0,

where in the second line above we use that cos is an even function,
while sin is odd.

If we add these two equations together we get:

2A cos (
√

λπ) = 0.
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This is true if either A = 0 or
√

λ =

(

1

2
+ n

)

. If
√

λ =

(

1

2
+ n

)

then

y(π) = B sin

((

1

2
+ n

)

π

)

= 0.

As sin

((

1

2
+ n

)

π

)

= ±1 we must have B = 0.

On the other hand, if A = 0 above then we have:

y(π) = B sin (
√

λπ).

If B 6= 0 then we must have
√

λ = n. Combining our two results we
get that the possible eigenvalues are:

λn =
n2

4
,

for n ∈ N, and n > 0, with corresponding eigenfunctions:

yn(x) =

{

cos
(

n

2
x
)

n odd
sin

(

n

2
x
)

n even
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3.8.5 Same instructions as Problem 3.8.1, but for the eigenvalue problem:

y′′ + λy = 0; y(−2) = 0, y′(2) = 0.

Solution - If λ = 0 then, just as in Problem 3.8.1, the solution to the
ODE will be:

y(x) = Ax + B,

y′(x) = A.

If we plug in our endpoint conditions we get y(−2) = −2A + B = 0
and y′(2) = A = 0. These equations are satisfied if and only if A =
B = 0, which is the trivial solution. So, λ = 0 is not an eigenvalue.

If λ > 0 then, just as in Problem 3.8.1, the solution to the ODE will be
of the form:

y(x) = A cos (
√

λx) + B sin (
√

λx),

with

y′(x) = −A
√

λ sin (
√

λx) + B
√

λ cos (
√

λx).

Plugging in the endpoint conditions, and using that cos is even and
sin is odd, we get:

y(−2) = A cos (−2
√

λ) + B sin (−2
√

λ) =

A cos (2
√

λ) − B sin (2
√

λ) = 0,

y′(2) = −A
√

λ sin (2
√

λ) + B
√

λ cos (2
√

λ) = 0.

If we divide both sides of the second equality by
√

λ we get
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−A sin (2
√

λ) + B cos (2
√

λ) = 0.

From these equations we get:

A cos (2
√

λ) = B sin (2
√

λ) ⇒ A

B
= tan (2

√
λ),

B cos (2
√

λ) = A sin (2
√

λ) ⇒ B

A
= tan (2

√
λ).

So,

A

B
=

B

A
⇒ A2 = B2.

So, either A = B or A = −B.

If A = B then tan (2
√

λ) = 1, which means 2
√

λ =
π

4
+ nπ, and

therefore

λ =

((

1 + 4n

8

)

π

)2

.

If A = −B then tan (2
√

λ) = −1, which means 2
√

λ =
3π

4
+ nπ, and

therefore

λ =

((

3 + 4n

8

)

π

)2

.

So, the eigenvalues are:
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λn =

((

1 + 2n

8

)

π

)2

with n ∈ N and n > 0, with corresponding eigenfunctions:

yn =

{

cos
((

1+2n

8

)

πx
)

+ sin
((

1+2n

8

)

πx
)

n even
cos

((

1+2n

8

)

πx
)

− sin
((

1+2n

8

)

πx
)

n odd
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3.8.8 - Consider the eigenvalue problem

y′′ + λy = 0; y(0) = 0 y(1) = y′(1) (not a typo).;

all its eigenvalues are nonnegative.

(a) Show that λ = 0 is an eigenvalue with associated eigenfunction
y0(x) = x.

(b) Show that the remaining eigenfunctions are given by yn(x) =
sin βnx, where βn is the nth positive root of the equation tan z =
z. Draw a sketch showing these roots. Deduce from this sketch
that βn ≈ (2n + 1)π/2 when n is large.

Solution -

(a) - If λ = 0 then the solution to the ODE will be of the form:

y(x) = Ax + B,

with

y′(x) = A.

So, y(0) = B = 0, and y(1) = A = y′(1). So, any function of the
form y(x) = Ax will work, and our eigenfunction for λ = 0 is:

y0 = x.

(b) - For λ > 0 the solutions will all be of the form:

y(x) = A cos (λx) + B sin (λx).

If we plug in y(0) = A = 0 we get the solutions are of the form:
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y(x) = Bsin(\/5x),

with

= Bvcos (\/I).

If we plug in the other endpoint values we get:

y(l) = Bsin(v) = BVcos(v’) = y’(l).

If B 0 then we must have:

tan(/)=

So, v”X works if it’s a root of the equation tan z = z, and if 8, is

the iith such root, then the associated eigenfunction is:

A sketch
intersect:

sin (/3x).

of z and tan z are below. The roots are where they

As ii gets large it occurs at approximately

L

/277 + iN
2

J7F.
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3.8.13 - Consider the eigenvalue problem

y′′ + 2y′ + λy = 0; y(0) = y(1) = 0.

(a) Show that λ = 1 is not an eigenvalue.

(b) Show that there is no eigenvalue λ such that λ < 1.

(c) Show that the nth positive eigenvalue is λn = n2π2 + 1, with
associated eigenfunction yn(x) = e−x sin (nπx).

Solution -

(a) - If λ = 1 then the characteristic polynomial is:

r2 + 2r + 1 = (r + 1)2,

which has roots r = −1,−1. So, −1 is a root with multiplicity 2. The
corresponding solution to the ODE will be:

y(x) = Ae−x + Bxe−x.

If we plug in the endpoint values we get:

y(0) = A = 0,

y(1) = Ae−1 + Be−1 = Be−1 = 0.

From these we see the only solution is the trivial solution A = B = 0,
so λ = 1 is not an eigenvalue.
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(b) - If λ < 1 then the characteristic polynomial will be:

r2 + 2r + λ,

which has roots

r =
−2 ±

√

22 − 4(1)λ

2
= −1 ±

√
1 − λ.

If λ < 1 then
√

1 − λ will be real, and the solution to our ODE will be
of the form:

y(x) = Ae(−1+
√

1−λ)x + Be(−1−
√

1−λ)x.

Plugging in our endpoint values we get:

y(0) = A + B = 0,

y(1) = Ae−1+
√

1−λ + Be−1−
√

1−λ = 0.

From these we get, after a little algebra:

A(1 − e−2
√

1−λ) = 0.

If λ < 1 then e−2
√

1−λ < 1, and therefore 1 − e2
√

1−λ > 0. So, for the
above equality to be true we must have A = 0, which means B = 0,
and so the only solution is the trivial solution A = B = 0. Therefore,
no value λ < 1 is an eigenvalue.

(c) - If λ > 1 then again using the roots from the quadratic equation in
part (b) we get that our solutions will be of the form:
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y(x) = Ae−x cos (
√

λ − 1x) + Be−x sin (
√

λ − 1x).

If we plug in the endpoint values we get:

y(0) = A = 0,

and so

y(x) = Be−x sin (
√

λ − 1x).

If we plug in our other endpoint value we get:

y(1) = Be−1 sin (
√

λ − 1) = 0.

If B 6= 0 then we must have sin (
√

λ − 1) = 0, which is only possible
if

√
λ − 1 = nπ,

⇒ λn = n2π2 + 1.

So, the eigenvalues are given above, and the corresponding eigen-
functions are:

yn = e−x sin (nπx),

for n ∈ N, n > 0.
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Section 4.1 - First-Order Systems and Applications

4.1.1 - Transform the given differential equation into an equivalent system
of first-order differential equations.

x′′ + 3x′ + 7x = t2.

Solution - If we define x = x1 then define:

x′
1 = x2,

x′
2 = t2 − 3x2 − 7x1.

So, the system is:

x′
1 = x2

x′
2 = −7x1 − 3x2 + t2

.

14



4.1.2 - Transform the given differential equation into an equivalent system
of first-order differential equations.

x(4) + 6x′′ − 3x′ + x = cos 3t.

Solution - Define x = x1. Then the equivalent system is:

x′
1 = x2

x′
2 = x3

x′
3 = x4

x′
4 = −6x3 + 3x2 − x1 + cos (3t)

.
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4.1.13 - Find the particular solution to the system of differential equations
below. Use a computer system or graphing calculator to construct a
direction field and typical solution curves for the given system.

x′ = −2y, y′ = 2x; x(0) = 1, y(0) = 0.

Solution - If we differentiate y′ = 2x, we get y′′ = 2x′ = −4y. So, we
have the differential equation:

y′′ + 4y = 0.

The solution to this ODE is:

y(t) = A cos (2t) + B sin (2t).

Now,

x(t) =
1

2
y′ =

1

2
(−2A sin (2t) + 2B cos (2t)) = −A sin (2t) + B cos (2t).

If we plug in x(0) = B = 1 and y(0) = A = 0 we get:

x(t) = cos (2t)

y(t) = sin (2t).
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More room, if necessary, for Problem 4.1.13.
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4.1.15 - Find the general solution to the system of differential equations
below. Use a computer system or graphing calculator to construct a
direction field and typical solution curves for the given system.

x′ =
1

2
y, y′ = −8x.

Solution - If we differentiate y′ = −8x we get y′′ = −8x′ = −4y. So,
our ODE is:

y′′ + 4y = 0.

The solution to this ODE is:

y(t) = A cos (2t) + B sin (2t).

The function x(t) is:

x(t) = −1

8
y′(t) = −A

4
sin (2t) +

B

4
cos (2t).

So, the general solution to this system of ODEs is:

x(t) = −A

4
sin (2t) +

B

4
cos (2t)

y(t) = A cos (2t) + B sin (2t).
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More room, if necessary, for Problem 4.1.15.

Pirecio
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4.1.22 (a) - Beginning with the general solution of the system from Prob-
lem 13, calculate x2 + y2 to show that the trajectories are circles.

(b) - Show similarly that the trajectories of the system from Problem
15 are ellipses of the form 16x2 + y2 = C2.

(a) - The general solution to the system of ODEs from Problem 4.1.13 is:

x(t) = −A sin (2t) + B cos (2t)

y(t) = A cos (2t) + B sin (2t).

From these we get:

x(t)2 + y(t)2 = (−A sin (2t) + B cos (2t))2 + (A cos (2t) + B sin (2t))2

= A2 sin2 (2t) − 2AB sin (2t) cos (2t) + B2 cos2 (2t) + A2 cos2 (2t) +
2AB sin (2t) cos (2t) + B2 sin2 (2t)

= A2 + B2.

So, circles.

(b) - The general solution to the system of ODEs from Problem 4.1.15 is:

x(t) = −A

4
sin (2t) +

B

4
cos (2t)

y(t) = A cos (2t) + B sin (2t).

So,

16x(t)2 = A2 sin2 (2t) − 2AB sin (2t) cos (2t) + B2 cos2 (2t),

y(t)2 = A2 cos2 (2t) + 2AB sin (2t) cos (2t) + B2 sin2 (2t).

Combining these we get 16x(t)2 + y(t)2 = A2 + B2 = C2. So, ellipses.
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Section 4.2 - The Method of Elimination

4.2.1 - Find a general solution to the linear system below. Use a computer
system or graphing calculator to construct a direction field and typi-
cal solution curves for the system.

x′ = −x + 3y
y′ = 2y

Solution - The differential equation

y′ = 2y

has the solution

y(t) = Ae2t.

So,

x′ = −x + 3Ae2t ⇒ x′ + x = 3Ae2t.

This is a first-order linear ODE. Its integrating factor is:

ρ(t) = e
R

1dt = et.

Multiplying both sides by this integrating factor our linear ODE be-
comes:

d

dt

(

etx
)

= 3Ae3t.
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Integrating both sides we get:

etx = Ae3t + B

x Ae2 + Be.

So, the general solution to this system is:

x(t) = Ae2t + Be_t,

j(t) = Ae2t.

We can write this in vector form as:

(I)4(i)2t+B(i)t

looks kind of like this:The direction field
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4.2.10 Find a particular solution to the given system of differential equa-
tions that satisfies the given initial conditions.

x′ + 2y′ = 4x + 5y,

2x′ − y′ = 3x;

x(0) = 1, y(0) = −1.

Solution - If we add 2 times the second equation to the first we get:

5x′ = 10x + 5y.

If we subtract 2 times the first equation from the second we get:

−5y′ = −5x − 10y ⇒ 5y′ = 5x + 10y.

Differentiating 5x′ = 10x+5y and plugging in 5y′ = 5x+10y we get:

5x′′ = 10x′ + 5y′ = 10x′ + (5x + 10y)

⇒ 5x′′ = 10x′ + (5x + 10x′ − 20x)

⇒ 5x′′ = 20x′ − 15x

⇒ x′′ = 4x′ − 3x.

The linear homogeneous differential equation x′′ − 4x′ + 3x = 0 has
characteristic equation:

r2 − 4r + 3 = (r − 3)(r − 1).
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So, the roots are r = 3, 1, and the general solution to the ODE is:

x(t) = c1e
3t + c2e

t.

From the equation 5y′ = 5x + 10y we get y′ = x + 2y, and therefore:

y′ − 2y = c1e
3t + c2e

t.

If we multiply both sides by the integrating factor e−2t we get:

d

dt

(

e−2ty
)

= c1e
t + c2e

−t.

Integrating both sides we get:

e−2ty = c1e
t − c2e

−t + C,

and so:

y(t) = c1e
3t − c2e

t + Ce2t.

Plugging this into any of the equations in our system gives us C = 0.
So,

y(t) = c1e
3t − c2e

t.

We can write this solution in matrix form as:

x(t) = c1

(

1
1

)

e3t + c2

(

1
−1

)

et.
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If we plug in

x(0) =

(

1
−1

)

= c1

(

1
1

)

+ c2

(

1
−1

)

we can see immediately that c1 = 0 and c2 = 1. So, the solution to
our initial value problem is:

x(t) =

(

1
−1

)

et.
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4.2.19 Find a general solution to the given system of differential equations.

x′ = 4x − 2y,

y′ = −4x + 4y − 2z,

z′ = −4y + 4z.

Solution - If we differentiate the first equation we get:

x′′ = 4x′ − 2y′ = 4x′ − 2(−4x + 4y − 2z)

⇒ x′′ = 4x′ + 8x − 8y + 4z.

Differentiating again we get:

x(3) = 4x′′ + 8x′ − 8y′ + 4z′ = 4x′′ + 8x′ − 8y′ + 4(−4y + 4z)

⇒ x(3) = 4x′′ + 8x′ − 8y′ − 16y + 16z

⇒ x(3) = 4x′′ + 8x′ − 8y′ − 16y + 8(−y′ − 4x + 4y)

⇒ x(3) = 4x′′ + 8x′ − 16y′ + 16y − 32x

⇒ x(3) = 4x′′ + 8x′ − 8(4x′ − x′′) + 8(4x − x′) − 32x

⇒ x(3) = 12x′′ − 32x′ ⇒ x(3) − 12x′′ + 32x′ = 0.

The characteristic equation for this ODE is

r3 − 12r2 + 32r = r(r − 8)(r − 4).

So,
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x(t) = c1 + c2e
8t + c3e

4t.

From this we get:

x′(t) = 8c2e
8t + 4c3e

4t

and

y(t) = 2x − 1

2
x′ = 2c1 − 2c2e

8t.

Finally,

z(t) = −2x′(t) + 2y(t) − 1

2
y′(t) = 2c1 + 2c2e

8t − 2c3e
4t.

So,

x(t) = c1 + c2e
8t + c3e

4t,

y(t) = 2c1 − 2c2e
8t,

z(t) = 2c1 + 2c2e
8t − 2c3e

4t.
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4.2.28 For the system below first calculate the operational determinant to
determine how many arbitrary constants should appear in a general
solution. Then attempt to solve the system explicitly so as to find
such a general solution.

(D2 + D)x + D2y = 2e−t

(D2 − 1)x + (D2 − D)y = 0

Solution - The operational determinant of the system above is:

(D2 +D)(D2 −D)−D2(D2 − 1) = D4 −D3 +D3 −D2 −D4 +D2 = 0.

So, there are 0(!) arbitrary constants. How is this possible? Well, if
we subtract the second relation from the first we get:

(D + 1)x + Dy = 2e−t

⇒ Dy = 2e−t − (D + 1)x

⇒ D2y = −2e−t − (D2 + D)x

⇒ (D2 + D)x + D2y = −2e−t.

However, this cannot be, as our first relation above is:

(D2 + D)x + D2y = 2e−t,

and 2e−t 6= −2e−t. So, there is no solution to the system.
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