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Section 3.8 - Endpoint Problems and Eigenvalues

3.8.1 For the eigenvalue problem
v+ Ay =0 y'(0)=0y(1) =0,

tirst determine whether A = 0 is an eigenvalue; then find the positive
eigenvalues and associated eigenfunctions.

Solution - First, if X\ = 0 then the solution to the differential equation
y' =0
is
y = Azr + B.

From this we get ' = A, and so if y'(0) = 0 we must have A = 0. This
would mean y = B, and if y(1) = 0 then B = 0. So, only the trivial
solution A = B = 0 works, and therefore A = 0 is not an eigenvalue.

For A > 0 the characteristic polynomial for our linear differential
equation is:

r24+A=0,

which has roots r = £+v/—A. The corresponding solution to our ODE
will be:

y = Acos (VAz) + Bsin (Vz).
with derivative

y = —AV\sin (VAz) + BV Acos (VAz).
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So, y'(0) = Bv/), and therefore if 4/ (0) = 0 then we must have B = 0,
as A > 0. So, our solution must be of the form:

y = Acos (Vx).
If we plug in y(1) = 0 we get:
y(1) = Acos (VA) = 0.

If A # 0 we must have cos(v/A) = 0, which is true only if VA =
g + nm. So, the eigenvalues are:

2
Ap = <7r (%—I—n)) ,withn e N,

and corresponding eigenfunctions

s = cos ((Z +m) ).



3.8.3 Same instructions as Problem 3.8.1, but for the eigenvalue problem:

Y +Xy=0; y(—7)=0,y(r)=0.

Solution - If A\ = 0 then, as in Problem 3.8.1, our solution will be of
the form:

y=Axr+ B.

This means y(7) = An + B =0, and y(—n) = —An + B = 0. Adding
these two equations we get 2B = 0, which means B = 0. If B = 0
then Am = 0, which means A = 0. So, the only solution is the trivial
solution A = B = 0, and therefore A = 0 is not an eigenvalue.

Now if A > 0 then again just as in Problem 3.8.1 we'll have a solution
of the form:

y(x) = Acos (VAx) + Bsin (Vz).
If we plug in our endpoint values we get:

y() = Acos (VA1) + Bsin (VA1) = 0,

y(—m) = Acos (—V A1) + Bsin (—V A1) =
Acos (VAr) — Bsin (VAr) =0,

where in the second line above we use that cos is an even function,
while sin is odd.

If we add these two equations together we get:

24 cos (VAr) = 0.
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This is true if either A = 0 or VA = (% + n) If V) = (% + n) then

o= (L 40) ) o

As sin ((% + n) w) = +1 we must have B = 0.

On the other hand, if A = 0 above then we have:
y(m) = Bsin (V).

If B # 0 then we must have v/A = n. Combining our two results we
get that the possible eigenvalues are:

forn € N, and n > 0, with corresponding eigenfunctions:

cos (ﬁx) n odd
Yn(2) = { sin (éz) n even



3.8.5 Same instructions as Problem 3.8.1, but for the eigenvalue problem:

Y +xy=0;, y(-2)=0,y(2)=0.

Solution - If A = 0 then, just as in Problem 3.8.1, the solution to the
ODE will be:

If we plug in our endpoint conditions we get y(—2) = —2A+ B =0
and y'(2) = A = 0. These equations are satisfied if and only if A =
B = 0, which is the trivial solution. So, A = 0 is not an eigenvalue.

If A > 0 then, just as in Problem 3.8.1, the solution to the ODE will be
of the form:

y(z) = Acos (VAz) + Bsin (VAz),

with

y'(x) = —AV\sin (VAz) + BV A cos (V).

Plugging in the endpoint conditions, and using that cos is even and
sin is odd, we get:

y(—2) = Acos (—2V\) + Bsin (—2V\) =
Acos (2VA) — Bsin (2V/)) = 0,

y'(2) = —AVAsin (2VA) + BvX cos (2v/X) = 0.

If we divide both sides of the second equality by v\ we get



—Asin (2V/)\) + Bcos (2VA) = 0.

From these equations we get:

Acos (2VX) = Bsin (2VA) = = = tan (2V\),

=l W

Becos (2VA) = Asin (2VA) = = = tan (2V\).

So,

So, either A = Bor A = —B.

If A = B then tan(2v/X) = 1, which means 2v/\ = % + nm, and

therefore
2
=((557))

3
If A = —B then tan (2v/A) = —1, which means 2v/\ = Zﬂ + nm, and

therefore
2
=((55) )
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So, the eigenvalues are:




n= () )

with n € Nand n > 0, with corresponding eigenfunctions:

n even

Y= { cos ((“%2") 7rx) + sin ((1+2”) T
" n odd

cos ((HSQ") Tx) — sin ((“‘22”) T

SN—"




3.8.8 - Consider the eigenvalue problem

y' '+ y=0;, y(0)=0 y(1) =1y (1) (nota typo).;

all its eigenvalues are nonnegative.

(@) Show that A = 0 is an eigenvalue with associated eigenfunction
yo(z) = .

(b) Show that the remaining eigenfunctions are given by y,(z) =
sin 3,z, where 3, is the nth positive root of the equation tan z =
z. Draw a sketch showing these roots. Deduce from this sketch
that 5, ~ (2n + 1)7/2 when n is large.

Solution -

(a) - If A = 0 then the solution to the ODE will be of the form:

y(x) = Az + B,
with

y'(z) = A

So, y(0) = B=0,and y(1) = A = y'(1). So, any function of the
form y(z) = Az will work, and our eigenfunction for A = 0 is:

Yo = .
(b) - For A\ > 0 the solutions will all be of the form:
y(x) = Acos (Az) + Bsin (Az).

If we plug in y(0) = A = 0 we get the solutions are of the form:



y(z) = Bsin (VAz),
with
y'(z) = BVAcos (VAz).
If we plug in the other endpoint values we get:
y(1) = Bsin (V) = BVAcos (VA) = /(1).
If B # 0 then we must have:

tan (V) = VA,

So, VA works if it’s a root of the equation tan z = z, and if £, is
the nth such root, then the associated eigenfunction is:

Yn = sin (G,x).

A sketch of z and tan z are below. The roots are where they
intersect:

i

| 2n + 1
As n gets large it occurs at approximately ( n2+ ) .
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3.8.13 - Consider the eigenvalue problem

v +2y + Xy =0; y(0)=y(1)=0.

(a) Show that A = 1 is not an eigenvalue.
(b) Show that there is no eigenvalue A such that A < 1.

(c) Show that the nth positive eigenvalue is A\, = n?7? + 1, with
associated eigenfunction y, () = e~ % sin (nmx).

Solution -

(@) -If A = 1 then the characteristic polynomial is:
P+ 2r+1=(r+1)>%

which has roots » = —1, —1. So, —1 is a root with multiplicity 2. The
corresponding solution to the ODE will be:

y(x) = Ae™ + Bre™".
If we plug in the endpoint values we get:

y(0) =A=0,

y(1) = Ae '+ Be™! = Be™' = 0.

From these we see the only solution is the trivial solution A = B = 0,
so A = 1is not an eigenvalue.
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(b) - If XA < 1 then the characteristic polynomial will be:

r2 4+ 2r + )\,

which has roots

r

— 2 _
_ 2:|:\/22 4(1»:—11@.

If A < 1then v/1 — )\ will be real, and the solution to our ODE will be
of the form:

y(x) — Ae(—1+\/1—)\)m _i_Be(—l—\/l—)\)m.

Plugging in our endpoint values we get:

y(0)=A+B=0,

y(1) = Ae "TVITA 4 BemTVITA =,

From these we get, after a little algebra:

Al — e V172 = .

If A < 1 then e=2V1=* < 1, and therefore 1 — ¢2V1=* > (. So, for the
above equality to be true we must have A = 0, which means B = 0,
and so the only solution is the trivial solution A = B = 0. Therefore,
no value A < 1is an eigenvalue.

(c) - If A > 1 then again using the roots from the quadratic equation in
part (b) we get that our solutions will be of the form:
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y(x) = Ae™% cos (VA — 1x) + Be sin (VA — 1z).
If we plug in the endpoint values we get:
y(0)=A4=0,
and so
y(x) = Be ®sin (VA — 1z).
If we plug in our other endpoint value we get:
y(1) = Be 'sin (VA — 1) = 0.

If B # 0 then we must have sin (v/A — 1) = 0, which is only possible
if

VA—1=nm,

=\, =n’n? + 1.

So, the eigenvalues are given above, and the corresponding eigen-
functions are:

Yn =€ “sin (nmx),

forn e N, n > 0.
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Section 4.1 - First-Order Systems and Applications

4.1.1 - Transform the given differential equation into an equivalent system
of first-order differential equations.

2+ 32 + Tr =t

Solution - If we define x = x; then define:

/
.Tl - xQ,

x; =t* — 329 — Tx1.

So, the system is:

x2 = —7.’1:1 - 3.’1:2 _'_ t2 )
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4.1.2 - Transform the given differential equation into an equivalent system
of first-order differential equations.

2@ 4+ 62" — 32" + x = cos 3t.

Solution - Define x = x;. Then the equivalent system is:

€Ty = i)
xrh = 3
Th o= Xy
¥y, = —6xs + 3z — x1 + cos(3t)
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4.1.13 - Find the particular solution to the system of differential equations
below. Use a computer system or graphing calculator to construct a
direction field and typical solution curves for the given system.

==2y, y =2z 2(0)=1,y(0)=0.

Solution - If we differentiate y' = 2x, we get y" = 22’ = —4y. So, we
have the differential equation:

vy +4y = 0.
The solution to this ODE is:

y(t) = Acos (2t) + Bsin (2t).

z(t) ==y = %(—214 sin (2t) 4+ 2B cos (2t)) = —Asin (2t) + B cos (2t).

N —

If we plug in 2(0) = B = 1 and y(0) = A = 0 we get:

x(t) = cos (2t)

y(t) = sin (2t).
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More room, if necessary, for Problem 4.1.13.

p//ec %/"0/{ /:/'6 /0/

/N

Note: Should be
circles, T'm nod
~ o Fhe behl afnyﬁL,
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4.1.15 - Find the general solution to the system of differential equations
below. Use a computer system or graphing calculator to construct a
direction field and typical solution curves for the given system.

1
v = 5% y/ = —8z
Solution - If we differentiate y' = —8x we get ¢y = —8z' = —4y. So,
our ODE is:
y" + 4y = 0.

The solution to this ODE is:
y(t) = Acos (2t) + Bsin (2t).
The function z(t) is:
z(t) = —=y'(t) = —? sin (2t) + ? cos (2t).
So, the general solution to this system of ODEs is:

z(t) = —% sin (2t) + gcos (2t)

y(t) = Acos (2t) + Bsin (2t).
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More room, if necessary, for Problem 4.1.15.

pirechfor[ /:,',e_ f 0(
\“——_\

T

-

(N
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4.1.22 (a) - Beginning with the general solution of the system from Prob-
lem 13, calculate 2% + y* to show that the trajectories are circles.

(b) - Show similarly that the trajectories of the system from Problem
15 are ellipses of the form 162% + y* = C%.

(@) - The general solution to the system of ODEs from Problem 4.1.13 is:
z(t) = —Asin (2t) + B cos (2t)
y(t) = Acos (2t) + Bsin (2t).
From these we get:

x(t)? + y(t)> = (—Asin (2t) + Bcos (2t))* + (Acos (2t) + Bsin (2t))?

= A%sin? (2t) — 2A B sin (2t) cos (2t) + B? cos® (2t) + A% cos® (2t) +
2AB sin (2t) cos (2t) + B?sin” (2t)

= A’ + B2

So, circles.

(b) - The general solution to the system of ODEs from Problem 4.1.15 is:

A B
x(t) = ——sin (2t) + — cos (2t)
4 4
y(t) = Acos (2t) + Bsin (2t).
So,
162(t)? = A%sin® (2t) — 2AB sin (2t) cos (2t) + B* cos? (2t),
y(t)? = A% cos® (2t) + 2ABsin (2t) cos (2t) + B*sin® (2t).

Combining these we get 16z(t)* 4+ y(t)? = A%+ B? = C?. So, ellipses.
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Section 4.2 - The Method of Elimination

4.2.1 - Find a general solution to the linear system below. Use a computer
system or graphing calculator to construct a direction field and typi-
cal solution curves for the system.

¥ = —x + 3y
y = 2y

Solution - The differential equation

has the solution
y(t) = Ae?.
So,
¥ = —x+ 34e* = 1’ + 1 = 3Ae*.
This is a first-order linear ODE. Its integrating factor is:
p(t) = el 14 — ¢t

Multiplying both sides by this integrating factor our linear ODE be-
comes:

% (etx) = 346,
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Integrating both sides we get:

elr = Ae** + B

=z = Ae* + Be™.
So, the general solution to this system is:

z(t) = Ae* + Be™,

y(t) = Ae?.

We can write this in vector form as:

(3)-4()ea(2)

The direction field looks kind of like this:

;7/7/’7,;7//7/?
= 7//7_/2

M [ — & VA
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4.2.10 Find a particular solution to the given system of differential equa-
tions that satisfies the given initial conditions.

¥ + 2y = 4x + 5y,

22 — vy = 3ux;

Solution - If we add 2 times the second equation to the first we get:
52" = 10z + 5y.
If we subtract 2 times the first equation from the second we get:
—5y = —bx — 10y = 5y’ = 5z + 10y.
Differentiating 52’ = 10z + 5y and plugging in 5y’ = 52 + 10y we get:

52" = 102" + 5y" = 102" + (5x + 10y)
= 52" = 102" + (5z + 102" — 20x)
= 52" = 202" — 15z

= 2" =42’ — 3.

The linear homogeneous differential equation " — 42’ 4+ 32 = 0 has
characteristic equation:

r? —dr +3=(r—3)(r—1).
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So, the roots are r = 3, 1, and the general solution to the ODE is:
x(t) = c1e™ + cpe.
From the equation 5y’ = 5z + 10y we get y' = x + 2y, and therefore:
Y — 2y = c1e¥ + cael.
If we multiply both sides by the integrating factor e~ we get:

d
5 (

e‘zty) = clet + c2e_t.

Integrating both sides we get:

e 2ty = crel — et 4+ O,
and so:

y(t) = c1e® — cpe! + Ce?.

Plugging this into any of the equations in our system gives us C' = 0.
So,

y(t) = c1e® — cyel.
We can write this solution in matrix form as:

x(t):cl(})egtjtcz(_ll )et.
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If we plug in

=1 )=al1) (L)

we can see immediately that ¢; = 0 and ¢; = 1. So, the solution to
our initial value problem is:
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4.2.19 Find a general solution to the given system of differential equations.

= 4x — 2y,
Yy = —dr + 4y — 2z,

7= —4y + 4z

Solution - If we differentiate the first equation we get:

2 =41 — 2y = 4x’ — 2(—4x + 4y — 22)

= 1" = 42’ + 8x — 8y + 4=.
Differentiating again we get:

2B = 42" 4+ 82" — 8y + 42" = 4a" + 82" — 8y + 4(—4y + 42)
= ) = 42" 4+ 8’ — 8y’ — 16y + 162
= &) = 42" + 82’ — 8y — 16y + 8(—y' — 4z + 4y)
= 0 = 42" + 82’ — 16y’ + 16y — 32z
= 2 = 42" + 82’ — 8(4a’ — 2") 4 8(4x — 2') — 32z

= o) = 122" — 322’ = 2 — 122" + 322/ = 0.
The characteristic equation for this ODE is
r3 —12r% + 32r = r(r — 8)(r — 4).
So,
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z(t) = c1 + coe® + cge™.
From this we get:

7' (t) = 8cqe® + 4cze™
and

1
y(t) = 2z — 51’/ = 2¢; — 2ce™.
Finally,
1
2(t) = =22'(8) + 2y(t) = ¢/ (t) = 21+ 200¢™ — 2e5e™.

So,

x(t) = c1 + c2e® + cze™,
y(t) = 2¢; — 2c0e™,

2(t) = 2¢; + 2c9e® — 2cze™.
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4.2.28 For the system below first calculate the operational determinant to
determine how many arbitrary constants should appear in a general
solution. Then attempt to solve the system explicitly so as to find
such a general solution.

(D*+ D)x + D2y = 2¢t
(D*~1)x + (D*-D)y = 0

Solution - The operational determinant of the system above is:
(D?*+ D)(D?*-D)—D*D*~1)=D*-D*+D*-D*-D*+ D*=0.

So, there are 0(!) arbitrary constants. How is this possible? Well, if
we subtract the second relation from the first we get:

(D +1)x+ Dy = 2¢™*
= Dy=2¢"—(D+ 1)z
= D%y =2~ (D?*+ D)x

= (D*+ D)z + D*y = —2¢7".
However, this cannot be, as our first relation above is:
(D? + D)z + D*y = 27",

and 2e~" # —2e~". So, there is no solution to the system.
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