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Section 3.4 - Mechanical Vibrations

3.4.1 - Determine the period and frequency of the simple harmonic motion
of a 4-kg mass on the end of a spring with spring constant 16N/m.

Solution - The differential equation 4x′′ + 16x = 0 can be rewritten as
x′′ + 4x = 0. This gives us ω2 = 4, and so the angular frequency is
ω = 2. From this we get the frequency and the period are:

f =
2

2π
=

1

π
,

T =
1

f
=

1
1
π

= π.
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3.4.5 - Assume that the differential equation of a simple pendulum of
length L is Lθ′′ + gθ = 0, where g = GM/R2 is the gravitational
acceleration at the location of the pendulum (at distance R from the
center of the earth; M denotes the mass of the earth).

Two pendulums are of lengths L1 and L2 and - when located at the
respective distances R1 and R2 from the center of the earth - have
periods p1 and p2. Show that

p1

p2
=

R1

√
L1

R2

√
L2

.

Solution - The differential equation governing the motion of our pen-
dulum is:

θ′′ +
g

L
θ = 0.

From this we get ω =

√

g

L
, and so the period is T =

2π

ω
= 2π

√

L

g
.

Ther period of pendulum 1 will therefore be:

p1 = 2π

√

L1

GM

R2

1

= 2π

√

L1R
2
1

GM
.

Similarly, the period of pendulum 2 will be:

p2 = 2π

√

L2R
2
2

GM
.

So, the ratio is:

p1

p2

=
2πR1

√
L1√

GM

2πR2

√
L2√

GM

=
R1

√
L1

R2

√
L2

.
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3.4.18 - A mass m is attached to both a spring (with spring constant k)
and a dashpot (with dampring constant c). The mass is set in motion
with initial position x0 and initial velocity v0. Find the position func-
tion x(t) and determine whether the motion is overdamped, critically
damped, or underdamped. If it is underdamped, write the position
function in the form x(t) = C1e

−pt cos (ω1t − α1). Also, find the un-
damped position function u(t) = C0 cos (ω0t − α0) that would result
if the mass on the spring were set in motion with the same initial
position and velocity, but with the dashpot disconnected (so c = 0).
Finally, construct a figure that illustrates the effect of damping by
comparing the graphs of x(t) and u(t).

m = 2, c = 12, k = 50,

x0 = 0, v0 = −8.

Solution - The discriminant of the characteristic polynomial is:

c2 − 4mk = 122 − 4(2)(50) = 144 − 400 = −256 < 0.

So, the motion will be underdamped. The roots of the characteristic
polynomial:

2r2 + 12r + 50

are (using the quadratic equation):

r =
−12 ±

√
−256

2(2)
= −3 ± 4i.

So, the solution is:
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x(t) = c1e
−3t cos (4t) + c2e

−3t sin (4t).

Plugging in the initial conditions we have:

x(0) = c1 = 0,

and therefore

x′(t) = −3c2e
−3t sin (4t) + 4c2e

−3t cos (4t)

⇒ x′(0) = 4c2 = −8 ⇒ c2 = −2.

So,

x(t) = −2e−3t sin (4t),

which we can write as:

x(t) = −2e−3t cos
(

4t −
π

2

)

.

Now, without damping we would get

ω0 =

√

k

m
=

√

50

2
= 5,

and our solution would be:

u(t) = c1 cos (5t) + c2 sin (5t).
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Ifwepluginu(O) = Oweget:

u’(t) = 5c2 cos (4t),

and so u’(O) = 5c2 = —8 = c2 = Therefore, the undamped

motion would be:

u(t) — sin (5t) = — cos (5t
—

The graphs of these two functions (damped and undamped) look
like:
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3.4.21 - Same as problem 3.4.18, except with the following values:

m = 1, c = 10, k = 125,

x0 = 6, v0 = 50.

Solution - The characteristic equation for this system will be:

r2 + 10r + 25

which has roots:

r =
−10 ±

√

102 − 4(1)(125)

2
= −5 ± 10i.

So, our solution is:

x(t) = e−5t(c1 cos (10t) + c2 sin (10t)),

with

x′(t) = 10e−5t(−c1 sin (10t) + c2 cos (10t)) − 5e−5t(c1 cos (10t) + c2 sin (10t)).

If we plug in our initial conditions we get:

x(0) = c1 = 6,

and

x′(0) = 10c2 − 5c1 = 10c2 − 30 = 50 ⇒ c2 = 8.

So, our solution is:

x(t) = e−5t(6 cos (10t) + 8 sin (10t)).
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We can rewrite this as:

10e−5t

(

3

5
cos (10t) +

4

5
sin (10t)

)

= 10e−5t cos (10t − α),

where α = tan−1

(

4

3

)

.

As for the undamped case we have:

ω =

√

125

1
= 5

√
5.

So, our solution is:

u(t) = c1 cos (5
√

5t) + c2 sin (5
√

5t),

u′(t) = −5
√

5c1 sin (5
√

5t) + 5
√

5c2 cos (5
√

5t).

If we plug in the initial conditions we get:

u(0) = c1 = 6,

u′(0) = 5
√

5c2 = 50 ⇒ c2 = 2
√

5.

So, our solution is:

u(t) = 6 cos (5
√

5t) + 2
√

5 sin (5
√

5t).

Writing this as just a cosine function we get that the amplitude is:

C =

√

62 + (2
√

5)2 =
√

36 + 20 =
√

56 = 2
√

14,

α = tan−1

(

2
√

5

6

)

.
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So, (t) = 2cos (5t — taif’ (v)).
The graphs of the damped and undamped solutions, x(t) and ‘u(t), re

spectively, are below:

J
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Section 3.5 - Nonhomogeneous Equations and Un-

determined Coefficients

3.5.1 - Find a particular solution, yp, to the differential equation

y′′ + 16y = e3x.

Solution - We guess the solution will be of the form:

yp = Ae3x,

y′
p = 3Ae3x,

y′′
p = 9Ae3x.

Plugging these into the ODE we get:

y′′
p + 16yp = 25Ae3x = e3x.

So, A =
1

25
, and we get:

yp =
1

25
e3x.
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3.5.11 - Find a particular solution, yp, to the differential equation

y(3) + 4y′ = 3x − 1.

Solution - The corresponding homogeneous equation is:

y(3) + 4y′ = 0,

which has characteristic polynomial:

r3 + 4r = r(r2 + 4).

The roots of this polynomial are r = 0,±2i, and the corresponding
homogeneous solution is:

yh = c1 + c2 sin (2x) + c3 cos (2x).

Now, our initial “guess” for the form of the particular solution would
be:

yp = Ax + B.

However, the two terms here are not linearly independent of the ho-
mogeneous solution, and so we need to multiply our guess by x to
get:

yp = Ax2 + Bx.

From here we get:
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y′
p = 2Ax + B,

y′′
p = 2A,

y(3)
p = 0.

Plugging these into our ODE we get:

0 + 8Ax + 4B = 3x − 1.

From this we get A =
3

8
, and B = −

1

4
. So, our particular solution is:

yp =
3

8
x2 −

1

4
x.
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3.5.23 - Set up the appropriate form of a particular solution yp, but do not
determine the values of the coefficients.1

y′′ + 4y = 3x cos 2x.

Solution - The corresponding homogeneous equation is:

y′′ + 4y = 0.

The characteristic polynomial is:

r2 + 4,

which has roots ±2i. So, the form of the homogeneous solution is:

y(x) = c1 sin (2x) + c2 cos (2x).

Now, the guess for our particular solution would be:

yp(x) = (Ax + B) sin (2x) + (Cx + D) cos (2x).

This guess is, however, not independent of our homogeneous solu-
tion, and so we must multiply it by x to get:

yp = (Ax2 + Bx) sin (2x) + (Cx2 + Dx) cos (2x).

1Unless you really, really want to.
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3.5.28 - Same instructions as Problem 3.5.23, but with the differential equa-
tion

y(4) + 9y′′ = (x2 + 1) sin 3x.

Solution - The corresponding homogeneous equation is:

y(4) + 9y′′ = 0.

The characteristic polynomial for this differential equation is:

r4 + 9r2 = r2(r2 + 9).

This polynomial has roots r = 0, 0,±3i. So, the homogeneous solu-
tion has the form:

yh = c1 + c2x + c3 sin (3x) + c4 cos (3x).

Our initial “guess” for the particular solution would be:

yp = (Ax2 + Bx + C) sin (3x) + (Dx2 + Ex + F ) cos (3x).

However, the terms here would not be independent of the homoge-
neous solution, and so we must multiply our guess by x to get:

yp = (Ax3 + Bx2 + Cx) sin (3x) + (Dx3 + Ex2 + Fx) cos (3x).
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3.5.35 - Solve the initial value problem

y′′ − 2y′ + 2y = x + 1;

y(0) = 3, y′(0) = 0.

Solution - The corresponding homogeneous equation is:

y′′ − 2y′ + 2y = 0.

The characteristic polynomial is:

r2 − 2r + 2.

This quadratic has roots r =
2 ±

√

(−2)2 − 4(1)(2)

2
= 1 ± i. So, the

general form of the homogeneous solution is:

yh = c1e
x cos (x) + c2e

x sin (x).

Our “guess” for the particular solution will be:

yp = Ax + B,

with

y′
p = A,

y′′
p = 0.

Plugging these into our differential equation we get:
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0 − 2A + 2(Ax + B) = x + 1.

Equating coefficients we get A =
1

2
, B = 1. So,

yp =
1

2
x + 1.

Therefore, the general form of our solution is:

y = yh + yp = c1e
x cos (x) + c2e

x sin (x) +
1

2
x + 1,

y′ = (c1 + c2)e
x cos (x) + (c2 − c1)e

x sin (x) +
1

2
.

Plugging in our initial conditions we get:

y(0) = 3 = c1 + 1,

y′(0) = 0 = c1 + c2 +
1

2
.

Solving this system we get c1 = 2, c2 = −
5

2
. So, our solution is:

y(x) = 2ex cos (x) −
5

2
ex sin (x) +

1

2
x + 1.
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3.5.47 - Use the method of variation of parameters to find a particular so-
lution to the differential equation

y′′ + 3y′ + 2y = 4ex.

Solution - The corresponding homogeneous equation is:

y′′ + 3y′ + 2y = 0.

This homogeneous equation has characteristic polynomial:

r2 + 3r + 2 = (r + 2)(r + 1).

The roots of this polynomial are r = −1,−2, and so the general form
of the homogeneous solution is:

yh = c1e
−2x + c2e

−x.

The corresponding Wronskian is:

W (e−2x, e−x) =

∣

∣

∣

∣

e−2x e−x

−2e−2x −e−x

∣

∣

∣

∣

= e−3x.

Using the method of variation of parameters to get a particular solu-
tion we have:

yp = −e−2x

∫

e−x(4ex)

e−3x
dx + e−x

∫

e−2x(4ex)

e−3x
dx

= −4e−2x

∫

e3xdx + 4e−x

∫

e2xdx = −
4

3
ex + 2ex =

2

3
ex.
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We can quickly check this:

2

3
ex + 3

(

2

3
ex

)

+ 2

(

2

3
ex

)

= 4ex.
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3.5.56 - Same instructions as Problem 3.5.47, but with the differential equa-
tion

y′′ − 4y = xex.

Solution - The corresponding homogeneous equation is:

y′′ − 4y = 0.

The characteristic polynomial is:

r2 − 4 = (r − 2)(r + 2).

The roots of this polynomial are r = ±2, and so the general form of
the homogeneous solution is:

yh = c1e
2x + c2e

−2x.

The corresponding Wronskian is:

W (e2x, e−2x) =

∣

∣

∣

∣

e2x e−2x

2e2x −2e−2x

∣

∣

∣

∣

= −4.

Using the method of variation of parameters to get a particular solu-
tion we have:
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yp = −e2x

∫

e−2x(xex)

−4
dx + e−2x

∫

e2x(xex)

−4
dx

=
1

4

(

e2x

∫

xe−xdx − e−2x

∫

xe3xdx

)

=
1

4

(

e2x
(

−xe−x − e−x
)

− e−2x

(

1

3
xe3x −

1

9
e3x

))

=
1

4

(

−xex − ex −
1

3
xex +

1

9
ex

)

= −
1

3
xex −

2

9
ex.
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Section 3.6 - Forced Oscillations and Resonance

3.6.1 - Express the solution of the initial value problem

x′′ + 9x = 10 cos 2t;

x(0) = x′(0) = 0,

as a sum of two oscillations in the form:

x(t) = C cos (ω0t − α) +
F0/m

ω2
0 − ω2

cos ωt.

Solution - The corresponding homogeneous equation is:

x′′ + 9x = 0,

which has characteristic polynomial:

r2 + 9

The roots of this polynomial are r = ±3i, and so the general form of
the homogeneous solution is:

xh = c1 cos (3t) + c2 sin (3t).

As for the particular solution, we guess it’s of the form:

xp = A cos (2t) + B sin (2t).
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The corresponding derivatives are:

x′
p = −2A sin (2t) + 2B cos (2t),

x′′
p = −4A cos (2t) − 4B sin (2t).

Plugging these into the ODE we get:

x′′
p + 9xp = 5A cos (2t) + 5B sin (2t) = 10 cos (2t).

So,A = 2, B = 0, and

xp = 2 cos (2t).

So, the general solution will be:

x(t) = c1 cos (3t) + c2 sin (3t) + 2 cos (2t),

with

x′(t) = −3c1 sin (3t) + 3c2 cos (3t) − 4 sin (2t).

Plugging in our initial conditions gives us:

x(0) = 0 = 2 + c1

x′(0) = 0 = 3c2.

So, c1 = −2, c2 = 0, and our solution is:

x(t) = −2 cos (3t) + 2 cos (2t).

This is already in the proper form.
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3.6.2 - Same instructions as Problem 3.6.1, but with the initial value prob-
lem:

x′′ + 4x = 5 sin 3t;

x(0) = x′(0) = 0.

Solution - The corresponding homogeneous equation is:

x′′ + 4x = 0.

The characteristic polynomial for this equation is:

r2 + 4 = 0,

which has roots r = ±2i. So, the general form of the homogeneous
solution is:

xh = c1 cos (2t) + c2 sin (2t).

As for the particular solution, we guess it’s of the form:

xp = A cos (3t) + B sin (3t),

with corresponding derivatives

x′
p = −3A sin (3t) + 3B cos (3t),

x′′
p = −9A cos (3t) − 9B sin (3t).
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Plugging these into the ODE we get:

x′′
p + 4xp = −5A cos (3t) − 5B sin (3t) = 5 sin (3t).

So, A = 0, B = −1, and our particular solution is:

xp = − sin (3t).

Our general solution is then:

x(t) = xh + xp = c1 cos (2t) + c2 sin (2t) − sin (3t),

with corresponding derivative

x′(t) = −2c1 sin (2t) + 2c2 cos (2t) − 3 cos (3t).

Plugging in our initial conditions we get:

x(0) = 0 = c1

x′(0) = 0 = 2c2 − 3.

So, c1 = 0, c2 =
3

2
, and our solution is:

x(t) =
3

2
sin (2t) − sin (3t).

Using the identity cos
(

x − π
2

)

= sin (x) we can convert this to the
desired form:

x(t) =
3

2
cos
(

2t −
π

2

)

− cos
(

3t −
π

2

)

.
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3.6.9 - Find the steady periodic solution xsp(t) = C cos (ωt− α) of the
given equation mx′′ + cx′ + kx = F (t) with periodic forcing function
F (t) of frequency ω. Then graph xsp(t) together with (for compari-
son) the adjusted forcing function F1(t) = F (t)/mω.

2x′′ + 2x′ + x = 3 sin 10t.

Solution - We first note the the corresponding homogeneous equation
is:

2x′′ + 2x′ + x = 0,

which has characteristic polynomial

2r2 + 2r + 1,

with roots r =
−2 ±

√

22 − 4(2)(1)

2(2)
= −

1

2
±

1

2
i.

So, the general form of the homogeneous solution is:

xh = c1e
− 1

2
t cos

(

1

2
t

)

+ c2e
− 1

2
t sin

(

1

2
t

)

.

The steady periodic solution is a particular solution, and our “guess”
for the particular solution is:

xsp = A cos (10t) + B sin (10t).

These terms are linearly independent of our homogeneous solution,
so this is a good guess. Its corresponding derivatives are:
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x′
sp = −10A sin (10t) + 10B cos (10t),

x′′
sp = −100A cos (10t) − 100B sin (10t).

Plugging these into our ODE we get:

2x′′
sp + 2x′

sp + xsp =
(−200A+20B+A) cos (10t)+(−200B−20A+B) sin (10t) = 3 sin (10t).

From these we get the pair of linear equations:

−199A + 20B = 0,

−20A + 199B = 3.

The solution to this system is:

A = −
60

40001
,

B = −
597

40001
.

So,

xsp = −
1

40001
(60 cos (10t) + 597 sin (10t)).

To express this in the proper form we have:

C =

√

(

−
60

40001

)2

+

(

−
597

40001

)2

=

√

360009

400012
=

3√
40001

,
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and

597\ 199”
= tan’ (z60j +taif’

So,

= Ccos (lot —

3
with C =

____

and c ir + tan1 1199”

v’40001

Graph: (Sketch)

.o,i
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3.6.17 - Suppose we have a forced mass-spring-dashpot system with equa-
tion:

x′′ + 6x′ + 45x = 50 cosωt.

Investigate the possibility of practical resonance of this system. In
particular, find the amplitude C(ω) of steady periodic forced oscilla-
tions with frequency ω. Sketch the graph of C(ω) and find the prac-
tical resonance frequency ω (if any).

Solution - Using the equation for C(ω) from section 3.6 of the text-
book:

C(ω) =
F0

√

(k − mω2)2 + (cω)2
,

with F0 = 50, m = 1, c = 6, and k = 45 we get:

C(ω) =
50

√

(45 − ω2)2 + (6ω)2
.

We get practical resonance when C(ω) is maximized, which will be
when the denominator is minimized. The denominator will be min-
imized when

(45 − ω2)2 + (6ω)2 = w4 − 54ω2 + 2025 = B(ω)

is minimized. Taking this functions first and second derivatives gives
us:

B′(ω) = 4ω3 − 108ω = (4ω2 − 108)ω,

B′′(ω) = 12ω2 − 108.
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Now, B’(w) = 0 when w = 0 or w = ±\/. Plugging these values
into B”(w) we find B”(O) < 0 and B”(+\/) > 0. So, w 0 is a local
max, while w = are minimums. As w = —\/ does not make
physical sense, we see that practical resonance occurs at w =

Graph of C(w): (Sketch)

C)

-LI
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3.6.24 - A mass on a spring without damping is acted on by the external
force F (t) = F0 cos3 ωt. Show that there are two values of ω for which
resonance occurs, and find both.

Solution - Using the trigonometric identity

cos2(θ) =
1 + cos (2θ)

2

we have

F0 cos3 (ωt) =
F0 cos (ωt) + F0 cos (ωt) cos (2ωt)

2
.

If we use the trigonometric identity

cos (A) cos (B) =
cos (A + B) + cos (A − B)

2

we get:

F0 cos (ωt) + F0 cos (ωt) cos (2ωt)

2
=

3F0 cos (ωt)

4
+

F0 cos (3ωt)

4
.

So, resonance occurs when

√

k

m
= ω or

√

k

m
= 3ω.
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Section 3.7 - Electrical Circuits

3.7.1 This problem deals with the RL circuit pictured below. It is a se
ries circuit containing an inductor with an inductance of L henries,
a resistor with a resistance of R ohms, and a source of electromotive
force (emf), but no capacitor. In this case the equation governing our
system is the first-order equation

LI’ + RI = E(t).

C

Suppose that L = 511, R = 25Q, and the source E of emf is a battery
supplying 1OOl to the circuit. Suppose also that the switch has been
in position 1 for a long time, so that a steady current of 4A is flowing
in the circuit. At time t = 0, the switch is thrown to position 2, so
thatl(0)=r4andE=Ofort>0. FindI(t).

Solution - The ODE that describes this system is:

We can rewrite this as:

51’ + 251 = 0.

I’ + SI = 0.

2



This is a first-order linear ODE, and the corresponding integrating

factor is ρ(t) = e
R

5dt = e5t. Multiplying both sides of the ODE by this
integrating factor we get:

e5tI ′ + 5e5tI = 0 ⇒
d

dt

(

e5tI
)

= 0.

Integrating both sides of the above equation we get:

e5tI = C ⇒ I(t) = Ce−5t.

If we plug in the initial condition I(0) = 4 = C we get the final
solution:

I(t) = 4e−5t.
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3.7.5 - In the circuit from Problem 3.7.1, with the switch in position 1, sup-
pose that E(t) = 100e−10t cos 60t, R = 20, L = 2, and I(0) = 0. Find
I(t).

Solution - The differential equation governing this system will be:

2I ′ + 20I = 100e−10t cos (60t).

If we divide both sides by 2 we get the ODE:

I ′ + 10I = 50e−10t cos (60t).

The integrating factor for this first-order linear ODE will be ρ(t) =
e

R

10dt = e10t. Multiplying both sides of our equation by this integrat-
ing factor we get:

d

dt

(

e10tI
)

= 50 cos (60t).

Integrating both sides of this equation gives us:

e10tI =
5

6
sin (60t) + C

⇒ I(t) =
5

6
e−10t sin (60t) + Ce−10t.

If we plug in the initial condition I(0) = 0 we get C = 0, and our
solution is:

I(t) =
5

6
e−10t sin (60t).
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3.7.10 - This problem deals with an RC circuit pictured below, containing
a resistor (R ohms), a capacitor (C farads), a switch, a source of emf,
but no inductor. This system is governed by the linear first-order
differential equation

dQ 1
R-- + = E(t).

for the charge Q = Q(t) on the capacitor at time t. Note that 1(t)
Q’(t).

C

Suppose an emf of voltage E(t) = B0 cos wt is applied to the RC
circuit at time t = 0 (with the switch closed), and Q(0) = 0. Substitute
Q5(t) = A cos wt + B sin wt in the differential equation to show that
the steady periodic charge on the capacitor is

E0C
Q5 (t) =

__________

cos (wt
—

3)p

where /3 = tan’ (wRC).
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Solution - Our steady periodic charge will be of the form:

Qsp = A cos (ωt) + B sin (ωt).

Its derivative will is:

Q′
sp = −ωA sin (ωt) + ωB cos (ωt).

If we plug these values into the ODE:

RQ′
sp +

1

C
Qsp = E0 cos (ωt),

we get:

−ARω sin (ωt) + BRω cos (ωt) +
A

C
cos (ωt) +

B

C
sin (ωt) = E0 cos (ωt).

Grouping like terms together and multiplying both sides by C we
have:

(B − AωRC) sin (ωt) + (A + BωRC) cos (ωt) = CE0 cos (ωt).

Equating coefficients we get B − AωRC = 0, which means B =
AωRC. Plugging these into the above equation gives us:

A(1 + ω2R2C2) cos (ωt) = CE0 cos (ωt).

So, A =
E0C

1 + ω2R2C2
, and B =

E0C
2ωR

1 + ω2R2C2
. From this we get:
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Qsp =
E0C

1 + ω2R2C2
(cos (ωt) + ωRC sin (ωt)).

If we define α = tan−1(ωRC) then

sin α =
ωRC√

1 + ω2R2C2
,

cos α =
1√

1 + ω2R2C2
.

Using these we can rewrite Qsp as:

Qsp =
E0C√

1 + ω2R2C2
(cos (α) cos (ωt) + sin (α) sin (ωt)).

If we use the trigonometric identity

cos (θ − φ) = cos (θ) cos (φ) + sin (θ) sin (φ)

we can rewrite the above equation as:

Qsp =
E0C√

1 + ω2R2C2
cos (ωt− α).

This is our desired form.
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3.7.17 For the RLC circuit pictured below find the current 1(t) using the
given values of R, L, C and V(t), and the given initial values.

L

(7
C

R = 16Q, L = 2H, C = .02F;

E(t) = 100V; 1(0) = 0, Q(0) 5.

Solution - The differential equation that governs this system is:

We can rewrite this as:

21’+161-i-50Q= 100.

I’ + 81 + 25Q 50.

The corresponding homogeneous equation is:

I’ + 81 + 25Q = 0.

The characteristic polynomial for this linear homogeneous ODE is:

r+8r+25,
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which has roots:

−8 ±
√

82 − 4(1)(25)

2
= −4 ± 3i.

So, the corresponding homogeneous solution is:

Qh(t) = c1e
−4t cos (3t) + c2e

−4t sin (3t).

As for a particular solution, we guess our particular solution is of the
form Qp(t) = A. Plugging this into our ODE we get:

25A = 50,

so A = 2. Therefore the solution to our differential equation is:

Q(t) = c1e
−4t cos (3t) + c2e

−4t sin (3t) + 2.

Its derivative is:

I(t) =
−3c1e

−4t sin (3t) − 4c1e
−4t cos (3t) + 3c2e

−4t cos (3t) − 4c2e
−4t sin (3t).

Plugging in our initial conditions gives us:

Q(0) = c1 + 2 = 5,

I(0) = −4c1 + 3c2 = 0.

Solving this system of equations gives us c1 = 3, c2 = 4. So, our
solution is:
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Q(t) = 3e−4t cos (3t) + 4e−4t sin (3t) + 2,

and

I(t) = −25e−4t sin (3t).
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3.7.19 Same instructions as Problem 3.7.17, but with the values:

R = 60Ω, L = 2H , C = .0025F ;

E(t) = 100e−10tV ; I(0) = 0, Q(0) = 1.

Solution - The differential equation that governs this circuit is:

2I ′ + 60I + 400Q = 100e−10t.

We can rewrite this ODE as:

I ′ + 30I + 200Q = 50e−10t.

The corresponding homogeneous equation is:

I ′ + 30I + 200Q = 0.

This has characteristic polynomial:

r2 + 30r + 200 = (r + 20)(r + 10).

The roots of this polynomial are: r = −10,−20, and so the homoge-
neous solution is:

Qh = c1e
−20t + c2e

−10t.

40



As for a particular solution, our first guess is the particular solution
will be of the form Ae−10t, but this would not be linearly independent
of our homogeneous solution, so we need to use the guess Ate−10t.
With this guess we get:

Qp = Ate−10t,

Q′
p = A(−10te−10t + e−10t),

Q′′
p = A(100te−10t − 20e−10t).

Plugging these into the ODE we get:

100Ate−10t − 20Ae−10t − 300Ate−10t + 30Ae−10t + 200Ate−10t =
10Ae−10t = 50e−10t

⇒ A = 5.

So, our solution is:

Q(t) = 5te−10t + c1e
−20t + c2e

−10t.

Its derivative is:

Q′(t) = I(t) = −50te−10t + 5e−10t − 20c1e
−20t − 10c2e

−10t.

Plugging in our initial conditions we get:

Q(0) = c1 + c2 = 1,

I(0) = 5 − 20c1 − 10c2 = 0.

Solving this system we get c1 =
3

2
, c2 = −

1

2
, and our current will be:

I(t) = 10e−20t − 10e−10t − 50te−10t.
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