
Math 2280 - Assignment 2

Dylan Zwick

Spring 2014

Section 1.5 - 1, 15, 21, 29, 38, 42

Section 1.6 - 1, 3, 13, 16, 22, 26, 31, 36, 56

Section 2.1 - 1, 8, 11, 16, 29

Section 2.2 - 1, 10, 21, 23, 24

1



Section 1.5 - Linear First-Order Equations

1.5.1 Find the solution to the initial value problem

y′ + y = 2 y(0) = 0

Solution - The integrating factor will be:

ρ(x) = e
R

1dx = ex.

Multiplying both sides by this integrating factor we get:

exy′ + exy = 2ex

⇒ d

dx
(exy) = 2ex.

Taking the antiderivative of both sides of the equation we get:

exy = 2ex + C.

Solving this for y:

y(x) = 2 + Ce−x.

Plugging in the initial condition y(0) = 0 and solving for C:

0 = 2 + Ce−0 → 0 = 2 + C → C = −2.

So, our answer is:

y(x) = 2 − 2e−x.
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1.5.15 Find the solution to the initial value problem

y′ + 2xy = x, y(0) = −2.

Solution - The integrating factor will be:

ρ(x) = e
R

2xdx = ex2

.

Multiplying both sides of the differential equation by this integrating
factor gives us:

ex2

y′ + 2xex2

y = xex2

⇒ d

dx
(ex2

y) = xex2

.

Taking the antiderivative of both sides gives us:

ex2

y =
1

2
ex2

+ C.

Solving for y(x):

y(x) = Ce−x2

+
1

2
.

Plugging in the initial condition y(0) = −2 and solving for C we get:

−2 = Ce−02

+
1

2
→ C = −5

2
.

So, the answer is:

y(x) =
1 − 5e−x2

2
.
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1.5.21 Find the solution to the initial value problem

xy′ = 3y + x4 cos x, y(2π) = 0.

Solution - Dividing both sides of the differential equation by x, and
doing a bit of algebra, we get:

y′ − 3

x
y = x3 cos x.

The integrating factor will be:

ρ(x) = e−
R

3

x
dx = e−3 lnx = x−3 =

1

x3
.

Multiplying both sides of the differential equation by this integrating
factor we get:

1

x3
y′ − 3

x4
y = cos x

⇒ d

dx

( y

x3

)

= cos x.

Taking the antiderivative of both sides gives us:

y

x3
= sin x + C.

Solving this for y(x):

y(x) = x3 sin x + Cx3.
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Plugging in the initial condition y(2π) = 0 and solving for C we get:

0 = (2π)3 sin (2π) + C(2π)2 → 0 = 4π2C → C = 0.

So, our answer is:

y(x) = x3 sin x.
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1.5.29 Express the general solution of dy/dx = 1+2xy in terms of the error
function

erf(x) =
2√
π

∫ x

0

e−t2dt.

Solution - We can rewrite the differential equation

dy

dx
= 1 + 2xy

as

y′ − 2xy = 1.

The integrating factor for this first-order linear ODE will be:

ρ(x) = e−
R

2xdx = e−x2

.

Multiplying both sides of the differential equation by this integrating
factor gives us:

e−x2

y′ − 2xe−x2

y = e−x2

⇒ d

dx
(e−x2

y) = e−x2

.

Taking the antiderivative of both sides gives us:

e−x2

y =

∫

e−x2

dx =

√
π

2
erf(x) + C.

Solving this for y(x) we get:

y(x) = ex2

(√
π

2
erf(x) + C

)

.
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1.5.38 Consider the cascade of two tanks shown below with V1 = 100 (gal)
and V2 = 200 (gal) the volumes of brine in the two tanks. Each tank
also initially contains 50 lbs of salt. The three flow rates indicated in
the figure are each 5 gal/mm, with pure water flowing into tank 1.
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(b) Suppose that y(t) is the amount of salt in tank 2 at time t. Show
first that

dy

dt
=

5x

100
− 5y

200
.

and then solve for y(t), using the function x(t) found in part (a).

Solution - Tank 2 gains
5x

100
∆t pounds of salt in time ∆t from

tank 1 and, assuming instant mixing, loses
5y

200
∆t pounds of

salt in time ∆t. Taking the limit as ∆t → 0 we get

dy

dt
=

5x

100
− 5y

200
.

Using the result x(t) = 50e−
t

20 from part (a) we can rewrite this
as

dy

dt
+

y

40
=

5x

100
=

5

2
e−

t

20 .

The integrating factor will be e
R

1

40
dt = e

t

40 . Multiplying both
sides by this integrating factor we get:

e
t

40 y′ +
1

40
e

t

40 y =
5

2
e−

t

40

⇒ d

dt
(ye

t

40 ) =
5

2
e−

t

40 .

Taking the antiderivative of both sides:

ye
t

40 = C − 100e−
t

40 .

Solving this for y(t) we get:
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y(t) = Ce−
t

40 − 100e−
t

20 .

Using the initial condition y(0) = 50 and solving for C gives us:

50 = C − 100 → C = 150.

So, our answer is:

y(t) = 150e−
t

40 − 100e−
t

20 .
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(c) Finally, find the maximum amount of salt ever in tank 2.

Solution - We want to find where the derivative of y(t) is zero.

y′(t) = −15

4
e−

t

40 + 5e−
t

20 = 0

⇒ e−
t

20 =
3

4
e−

t

40 → e−
t

40 =
3

4

→ t = 40 ln

(

4

3

)

.

Plugging 40 ln

(

4

3

)

in for t we get:

y(40 ln

(

4

3

)

) = 150e− ln( 4

3
) − 100e−2 ln( 4

3
)) =

150

(

3

4

)

− 100

(

9

16

)

=
225

4
= 56.25 lbs. of salt.
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1.5.42 Suppose that a falling hailstone with density δ = 1 starts from rest
with negligible radius r = 0. Thereafter its radius is r = kt (k is a con-
stant) as it grows by accreation during its fall. Use Newton’s secon
d law - according to which the net force F acting on a possibly vari-
able mass m equals the time rate of change dp/dt of its momentum
p = mv - to set up and solve the initial value problem

d

dt
(mv) = mg, v(0) = 0,

where m is the variable mass of the hailstone, v = dy/dt is its velocity,
and the positive y-axis points downward. Then show that dv/dt =
g/4. Thus the hailstone falls as though it were under one-fourth the
influence of gravity.

Solution - The product rule tells us:

d

dt
(mv) =

dm

dt
v + m

dv

dt
.

The mass of the hailstone as a function of time is:

m(t) = δ

(

4

3
πr(t)3

)

⇒ dm

dt
= 4δπr2dr

dt
.

Now,
dr

dt
= k, so

dm

dt
=

3mk

r
.
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Plugging this in for
dm

dt
in the product rule equation, and using that

d

dt
(mv) = mg, we get:

m
dv

dt
+

3mk

r
v = mg.

As r(t) = kt this becomes

m
dv

dt
+

3m

t
v = mg.

Dividing everything by m we get:

dv

dt
+

3

t
v = g.

Multiplying both sides by the integrating factor

ρ(t) = e
R

3

t
dt = e3 ln t = t3

we get:

t3
dv

dt
+ 3t2v = t3g.

⇒ d

dt
(t3v) = t3g.

Integrating both sides and solving for v we get:
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t3v =
t4

4
g + C

⇒ v(t) =
t

4
g +

C

t3
.

Now, there’s a singularity at t = 0. If we assume that v(t) → 0 as
t → 0+ we must have C = 0. So,

v(t) =
t

4
g.

Differentiating this we get

dv

dt
=

g

4
,

which is what we wanted to prove.

Note that what’s going on here is that our model says the radius
of the hailstone is kt, so at time t = 0 the radius is zero, and the
hailstone doesn’t exist. So, it’s not too surprising there’s a singularity
at t = 0. So, we really want to restrict ourselves to positive times,
that is to say, times at which the hailstone exists, and treat the initial
condition v(0) = 0 as really being a statement that the limit of v(t) at
t → 0+ is 0.
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Section 1.6 - Substitution Methods and Exact Equa-

tions

1.6.1 Find the general solution of the differential equation

(x + y)y′ = x − y

Solution - We can rewrite the above differential equation as:

(x + y)
dy

dx
= x − y.

Multiplying both sides by dx gives us:

(x + y)dy = (x − y)dx

⇒ (x + y)dy + (y − x)dx = 0.

If we define M(x, y) = y − x and N(x, y) = x + y then a quick check:

∂M

∂y
= 1 =

∂N

∂x
,

verifies the differential equation is exact. Integrating M(x, y) with
respect to x gives us:

∫

Mdx =

∫

(y − x)dx = xy − x2

2
+ g(y) = F (x, y).

Taking the partial derivative of F (x, y) with respect to y we get:
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∂F

∂y
= x + g′(y) = x + y.

So, g′(y) = y, which means g(y) =
y2

2
, and our solution is:

F (x, y) = xy − x2

2
+

y2

2
= C.
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1.6.3 Find the general solution of the differential equation

xy′ = y + 2
√

xy

Solution - If we divide both sides of the above differential equation
by x we get:

y′ =
y

x
+ 2

√

y

x
.

This is a homogeneous equation. If we substitute v =
y

x
we get

y = xv, and consequently y′ = xv′ + v, so the differential equation
becomes:

xv′ + v = v + 2
√

v.

We can rewrite the differential equation directly above as:

x

(

dv

dx

)

= 2
√

v.

This is a separable differential equation, which we can write as:

dv√
v

=
2dx

x
.

Integrating both sides of the above equation we get:
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2
√

v = 2 lnx + C

⇒
√

v = lnx + C

⇒ v = (ln x + C)2.

If we plug back in v =
y

x
we get:

y

x
= (ln x + C)2

⇒ y(x) = x(ln x + C)2.
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1.6.13 Find the general solution of the differential equation

xy′ = y +
√

x2 + y2

Hint - You may find the following integral useful:

∫

dv√
1 + v2

= ln (v +
√

1 + v2).

Solution - If we divide everything in the above differential equation
by x we get:

y′ =
y

x
+

√

1 +
(y

x

)2

.

This is a homogeneous equation, and so we make the substitutuion

v =
y

x
, which implies y′ = xv′ + v. Plugging these into the equation

above we get:

xv′ + v = v +
√

1 + v2,

⇒ xv′ =
√

1 + v2,

⇒ dv√
1 + v2

=
dx

x
.

Integrating both sides of the above equation1 we get:

ln (v +
√

1 + v2) = ln x + C,

⇒ v +
√

1 + v2 = Cx.

1And using the suggested integral.
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Plugging in v =
y

x
and multiplying both sides by x we get our solu-

tion:

y +
√

x2 + y2 = Cx2.
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1.6.16 Find the general solution of the differential equation

y′ =
√

x + y + 1

Solution - If we make the substitution v = x+ y +1 we get v′ = 1+ y′,
and our equation becomes:

v′ − 1 =
√

v.

This is a separable differential equation which we can rewrite as:

dv√
v + 1

= dx.

The integral:

∫

dv√
v + 1

can be solved first with the u-substitution u =
√

v, and so du =
dv

2
√

v
,

which gives us the integral:

∫

2udu

u + 1
= 2

∫

udu

u + 1
.

If we make the substitution w = u+1, dw = du this integral becomes:

2

∫

(w − 1)dw

w
= 2

∫

dw − 2

∫

dw

w
= 2w − 2 ln w.
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Substituting back w = u + 1 =
√

v + 1 this becomes:

2(
√

v + 1) − 2 ln (
√

v + 1).

The integral on the other side is trivial:

∫

dx = x + C.

So, our solution is:

2(
√

v + 1) − 2 ln (
√

v + 1) = x + C.

If we plug in v = x + y and do a little algebra this becomes:

x = 2
√

x + y + 1 − 2 ln (1 +
√

x + y + 1) + C.
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1.6.22 Find the general solution of the differential equation

x2y′ + 2xy = 5y4

Solution - We can rewrite the above differential equation as:

y′ +
2

x
y =

5

x2
y4.

This is a Bernoulli equation with n = 4. We make the substitution:

v = y1−4 = y−3

to transform the ODE into:

dv

dx
+ (1 − 4)

(

2

x

)

v = (1 − 4)
5

x2

⇒ dv

dx
− 6

x
v = −15

x2
.

This is a first-order linear ODE, so we use the integrating factor

ρ(x) = e
R

−
6

x
dx = x−6

to get

d

dx
(x−6v) = −15

x8
.
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Integrating both sides we get:

x−6v =
15

7
x−7 + C

⇒ v(x) =
15

7x
+ Cx6.

Plugging back in v = 1/y3 we get:

1

y3
=

15 + Cx7

7x

⇒ y3 =
7x

15 + Cx7
.
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1.6.26 Find the general solution of the differential equation

3y2y′ + y3 = e−x

Solution - We can rewrite the above ODE as:

y′ +
1

3
y =

y−2

3
e−x

which is a Bernoulli equation with n = −2. Making the substitution
v = y1−(−2) = y3 we get:

dv

dx
+ v = e−x.

This is a first-order linear ODE with integrating factor:

ρ(x) = e
R

dx = ex.

If we multiply both sides by this integrating factor we get:

d

dx
(exv) = 1.

Integrating both sides we get:

exv = x + C

⇒ v = Ce−x + xe−x.

So, using v = y3, we get our solution:

y3 = e−x(x + C).
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1.6.31 Verify that the differential equation

(2x + 3y)dx + (3x + 2y)dy = 0

is exact; then solve it.

Solution - Setting M = 2x + 3y and N = 3x + 2y we have:

∂M

∂y
= 3 =

∂N

∂x
.

So, the ODE is exact. Solving for F (x, y) we get:

F (x, y) =

∫

Mdx = x2 + 3xy + g(y),

and

∂F

∂y
= 3x + g′(y) = 3x + 2y.

So, g′(y) = 2y, and therefore g(y) = y2 + C. So, our final solution is
F (x, y) = 0, or:

x2 + 3xy + y2 = C.
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1.6.36 Verify that the differential equation

(1 + yexy)dx + (2y + xexy)dy = 0

is exact; then solve it.

Solution - To verify the ODE is exact we set M = 1 + yexy and N =
2y + xexy. Then

∂M

∂y
= xyexy + exy =

∂N

∂x
.

Solving for F (x, y) we get:

F (x, y) =

∫

Mdx = x + exy + g(y).

This means

∂F

∂y
= xexy + g′(y) = xexy + 2y.

From this we get g(y) = y2 + C and therefore our solution is

x + exy + y2 = C.
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1.6.56 Suppose that n 6= 0 and n 6= 1. Show that the substitutuion v = y1−n

transforms the Bernoulli equation

dy

dx
+ P (x)y = Q(x)yn

into the linear equation

dv

dx
+ (1 − n)P (x)v(x) = (1 − n)Q(x).

Solution - If we make the substitution v = y1−n then v
1

1−n = y and

dy

dx
=

1

1 − n
v( 1

1−n
−1)

(

dv

dx

)

=
1

1 − n
v

n

1−n

dv

dx
.

If we note yn = v
n

1−n then

dy

dx
+ P (x)y = Q(x)yn

becomes

1

1 − n
v

n

1−n

dv

dx
+ P (x)v

1

1−n = Q(x)v
n

1−n .

If we multiply both sides by (1 − n)v−
n

1−n we get:

dv

dx
+ (1 − n)P (x)v

1−n

1−n = (1 − n)Q(x)

⇒ dv

dx
+ (1 − n)P (x)v = (1 − n)Q(x).
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Section 2.1 - Population Models

2.1.1 Separate variables and use partial fractions to solve the initial value
problem:

dx

dt
= x − x2 x(0) = 2.

Solution - The differential equation above is separable:

dx

x − x2
= dt.

Noting x− x2 = x(1− x) the quotient on the left we can break up as:

(

A

x
+

B

1 − x

)

dx =
(A + (B − A)x)dx

x − x2
.

So, A = 1, and B − A = 0, which implies B = 1, and the integral on
the left becomes:

∫

dx

x
+

∫

dx

1 − x
= ln x − ln (1 − x) = ln

(

x

1 − x

)

.

The integral on the left is t + C, and so we have:

ln

(

x

1 − x

)

= t + C,

and so
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x

1 − x
= Cet.

If we solve for x(t) we get:

x(t) =
Cet

1 + Cet
.

Plugging in x(0) = 2 we get:

x(0) =
C

1 + C
= 2 ⇒ C = −2.

So, our solution is:

x(t) =
2

2 − e−t
.
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2.1.8 Separate variables and use partial fractions to solve the initial value
problem:

dx

dt
= 7x(x − 13) x(0) = 17.

Solution - The above differential equation separates as:

dx

7x(x − 13)
= dt.

We do a partial fraction decomposition of the quotient on the left:

A

7x
+

B

x − 13
=

1

7x(x − 13)
.

Solving for A and B we get:

A(x − 13) + 7Bx

7x(x − 13)
=

(A + 7B)x − 13A

7x(x − 13)
=

1

7x(x − 13)
.

From this we get A = − 1

13
and B =

1

91
. So, our integral is:

∫
(

− 1

91x
+

1

91(x − 13)

)

dx = − ln x

91
+

ln (x − 13)

91
= t + C.

After a little algebra we get:
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ln

(

x − 13

x

)

= 91t + C

⇒ x − 13

x
= Ce91t

⇒ x(t) =
13

1 − Ce91t
.

Using x(0) = 17 we get:

x(0) =
13

1 − C
= 17 ⇒ C =

4

17
.

So,

x(t) =
13

1 − 4
17

e91t
=

221

17 − 4e91t
.
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2.1.11 Suppose that when a certain lake is stocked with fish, the birth and

death rates β and δ are both inversely proportional to
√

P .

(a) Show that

P (t) =

(

1

2
kt +

√

P0

)2

.

(b) If P0 = 100 and after 6 months there are 169 fish in the lake, how
many will there be after 1 year?

Solutions -

(a) - By definition we have

β =
β0√
P

δ =
δ0√
P

.

The differential equation modeling population growth is:

dP

dt
= (β − δ)P = (β0 − δ0)

√
P = k

√
P ,

where k = β0 − δ0. From this we get:

dP

dt
= k

√
P ⇒ dP√

P
= kdt

⇒ 2
√

P = kt + C

⇒ P (t) =

(

1

2
kt + C

)2

.

We note P0 = P (0) = C2, so C =
√

P0, and our population
function is:
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P (t) =

(

1

2
kt +

√

P0

)2

.

(b) If we have P0 = 100 then our population function is:

P (t) =

(

1

2
kt +

√
100

)2

=

(

1

2
kt + 10

)2

.

Plugging in P (6) = 169 we get:

P (6) =

(

1

2
k(6) + 10

)2

= 169

⇒ 3k + 10 = 13 ⇒ k = 1.

So, our population equation is:

P (t) =

(

1

2
t + 10

)2

.

The number of fish after 1 year (12 months) is:

P (12) =

(

1

2
(12) + 10

)2

= 162 = 256.
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2.1.16 Consider a rabbit population P (t) satisfying the logistic equa-
tion dP/dt = aP − bP 2. If the initial population is 120 rabbits
and there are 8 births per month and 6 deaths per month oc-
curing at time t = 0, how many months does it take for P (t) to
reach 95% of the limiting population M?

Solution - We have

a(120) = 8 ⇒ a =
8

120
=

1

15

b(120)2 = 6 ⇒ b =
6

1202
=

1

2400
.

So, our population differential equation is:

dP

dt
=

1

15
P − 1

2400
P 2.

This is a separable differential equation, which we can write as:

2400dP

160P − P 2
= dt.

Noting that 160P − P 2 = P (160 − P ) a partial fraction decom-
position of the quotient on the left is:

A

P
+

B

160 − P
=

160A + (B − A)P

P (160 − P )
=

2400

160P − P 2
.

Solving for A and B we get A = 15, B = 15, and the integral
becomes:

15

∫
(

1

P
+

1

160 − P

)

dP = 15 lnP − 15 ln (160 − P ) =

15 ln

(

P

160 − P

)

.

34



If we equate this to

∫

dt = t + C we get:

15 ln

(

P

160 − P

)

= t + C

⇒ P

160 − P
= Ce

t

15 .

Solving for P (t) we get:

P (t) =
160Ce

t

15

1 + Ce
t

15

=
160

1 + Ce−
t

15

.

Using P (0) = 120 =
160

1 + C
and solving for C we get C =

1

3
. So,

our population function is:

P (t) =
480

3 + e−
t

15

.

As t → ∞ we have P (t) → 480
3

= 160. This is the limiting
population, and 95% of the limiting population is 152.

If we solve for when P (t) = 152 we get:

152 =
480

3 + e
−t∗

15

⇒ e−
t∗

15 =
480

152
− 3 =

24

152
=

3

19
.

Solving this for t∗ we get:

t∗ = −15 ln

(

3

19

)

= 27.69 months.

So, after 27.69 months (almost 2 and one-third year) the poplu-
ation will be at 95% of its limiting population.
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2.1.29 During the period from 1790 to 1930 the U.S. population P (t)
(t in years) grew from 3.9 million to 123.2 million. Through-
out this period, P (t) remained close to the solution of the initial
value problem

dP

dt
= 0.03135P − 0.0001489P 2, P (0) = 3.9.

(a) What 1930 population does this logistic equation predict?

(b) What limiting population does it predict?

(c) Has this logistic equation continued since 1930 to accurately
model the U.S. population?

[This problem is based on the computation by Verhulst, who in
1845 used the 1790-1840 U.S. population data to predict accu-
rately the U.S. population through the year 1930 (long after his
own death, of course).]

Solution -

(a) - Using the logistic population formula from the textbook:

P (t) =
(210.54)(3.9)

3.9 + (206.64)e−.03135t
.

So,

P (140) ≈ 127.0 million people.

(b) - M =
0.03135

.0001489
= 210.54 million.

So, about 210.5 million people.

(c) - No. The current U.S. population is above 300 million.
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Section 2.2 - Equilibrium Solutions and Stability

2.2.1 - Find the critical points of the autonomous equation

dx
—x-4.
dt

Then analyze the sign of the equation to determine whether each
critical point is stable or unstable, and construct the corresponding
phase diagram for the differential equation. Next, solve the differ
ential equation explicitly for x(t) in terms of t. Finally, use either the
exact solution or a computer-generated slope field to sketch typical
solution curves for the given differential equation, and verify visu
ally the stability of each critical point.
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2.2.10 Find the critical points of the autonomous equation

= 7x — — 10.
dt

Then analyze the sign of the equation to determine whether each
critical point is stable or unstable, and construct the corresponding
phase diagram for the differential equation. Next, solve the differ
ential equation explicitly for x(t) in terms of t. Finally, use either the
exact solution or a computer-generated slope field to sketch typical
solution curves for the given differential equation, and verify visu
ally the stability of each critical point.
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2.2.21 Consider the differential equation dx/dt = kx —

(a) If k 0, show that the only critical value c = 0 of x is stable.

(b) If k > 0, show that the critical point c = 0 is now unstable, but
that the critical points c = are stable. Thus the qualitative
nature of the solutions changes at k = 0 as the parameter k in
creases, and so k 0 is a bifurcation point for the differential
equation with parameter Ic.

The plot of all points of the form (k, c) where c is a critical point of
the equation x’ = kx — x3 is the “pitchform diagram” show in figure
2.2.13 of the textbook.
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2.2.23 Suppose that the logistic equation dx/dt = kx(M−x) models a pop-
ulation x(t) of fish in a lake after t months during which no fishing
occurs. Now suppose that, because of fishing, fish are removed from
the lake at a rate of hx fish per month (with h a positive constant).
Thus fish are “harvested” at a rate proportional to the existing fish
population, rather than at the constant rate of Example 4 from the
textbook.

(a) If 0 < h < kM , show that the population is still logistic. What is
the new limiting population?

(b) If h ≥ kM , show that x(t) → 0 as t → ∞, so the lake is eventually
fished out.

Solution -

(a) - If h < kM then our differential equation is:

dx

dt
= kx(M−x)−hx = x(kM−h)−kx2 = kx

((

M − h

k

)

− x

)

.

This is still a logistic population growth equation with limiting

population M − h

k
.

(b) - If h ≥ kM the solution to the logistic population equation will
be:

P (t) =

(

M − h
k

)

P0

P0 +
(

M − h
k
− P0

)

e−k(M−
h

k
)t

.

if we define N =
h

k
− M ≥ 0 we can rewrite this as:

P (t) =
−NP0

P0 − (P0 + N)ekNt
=

NP0

(P0 + N)ekNt − P0

.
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Taking the limit as t → ∞ we get:

lim
t→∞

NP0

(P0 + N)ekNt − P0
= 0.

So, the lake is eventually fished out.

Note that if h = kM then our differential equation becomes

dx

dt
= −kx2.

The solution to this ODE is:

x(t) =
P0

1 + P0kt
.

This also goes to 0 as t → ∞.
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2.2.24 Separate variables in the logistic harvesting equation

dx/dt = k(N − x)(x − H)

and then use partial fractions to derive the solution given in
equation 15 of the textbook (also appearing in the lecture notes).

Solution - The differential equation above is separable, and can be
written as:

dx

(N − x)(x − H)
= kdt.

Integrating both sides we get:

∫

dx

(N − x)(x − H)
=

∫

kdt = kt + C.

For the integral on the left we take a partial fraction decomposition:

1

(N − x)(x − H)
=

A

N − x
+

B

x − H
=

A(x − H) + B(N − x)

(N − x)(x − H)
.

So, we must have:

A(x − H) + B(N − x) = (A − B)x + (BN − AH) = 1.

From this we get A − B = 0, and so A = B. Plugging this into

BN − AH we have A(N − H) = 1, and so A =
1

N − H
= B.

Plugging these values of A and B into the partial fraction decompo-
sition gives us:
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1

N − H

∫
(

1

N − x
+

1

x − H

)

dx =
1

N − H
ln

(

x − H

N − x

)

= kt + C

⇒ ln

(

x − H

N − x

)

= k(N − H)t + C.

Exponentiating both sides we get:

x − H

N − x
= Cek(N−H)t

⇒ x − H = (N − x)Cek(N−H)t

⇒ x(1 + Cek(N−H)t) = H + NCek(N−H)t

⇒ x(t) =
H + NCek(N−H)t

1 + Cek(N−H)t
.

Noting

x(0) = x0 =
H + NC

1 + C
,

we can solve this for C to get:

C =
H − x0

x0 − N
.

Plugging this value of C into our solution above gives us:

x(t) =
H + N

(

H−x0

x0−N

)

ek(N−H)t

1 +
(

H−x0

x0−N

)

ek(N−H)t
.
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