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Section 1.1 - Differential Equations and Mathe-

matical Models

1.1.1 Verify by substitution that the given function is a solution of the
given differential equation. Throughout these problems, primes de-
note derivatives with respect to x.

y′ = 3x2; y = x3 + 7

Solution - The derivative of y(x) = x3 + 7 is 3x2. So, the solution
checks out. That was easy!
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1.1.12 Verify by substitution that the given function is a solution of the
given differential equation.

x2y′′ − xy′ + 2y = 0; y1 = x cos (ln x), y2 = x sin (ln x).

Solution - The first and second derivatives of y1 are:

y1(x) = x cos (ln x),

y′

1(x) = − sin (ln x) + cos (ln x),

y′′

1(x) = −cos (ln x)

x
− sin (lnx)

x
.

Plugging these into the differential equation above we get:

x2

(

−cos (ln x)

x
− sin (ln x)

x

)

−x(cos (lnx)−sin (ln x))+2x cos (ln x) =

0.

So, that one checks out. As for y2(x) we have the first and second
derivatives:

y2(x) = x sin (lnx),

y′

2(x) = cos (ln x) + sin (ln x),

y′′

2(x) = −sin (ln x)

x
+

cos (ln x)

x
.

Plugging these into the differential equation above we get:

x2

(

−sin (ln x)

x
+

cos (lnx)

x

)

−x(cos (ln x)+sin (lnx))+2x sin (ln x) =

0.

So, that one checks out too.
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1.1.15 Substitute y = erx into the given differential equation to determine
all values of the constant r for which y = erx is a solution of the
equation

y′′ + y′ − 2y = 0

Solution - The first and second derivatives of y = erx are:

y′ = rerx,

y′′ = r2erx.

If we plug these into the differential equation we get:

r2erx + rerx − 2erx = (r2 + r − 2)erx = 0.

As erx 6= 0 for any r or x, in order for the above equality to be true
we must have r2 + r − 2 = 0. The quadratic r2 + r − 2 factors as
(r + 2)(r − 1), and so its roots are r = 1 and r = −2. So, those are
the two values of r for which we get a solution to the differential
equation.

Note - The approach used in this problem you will be seeing again
many, many times throughout this course.
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1.1.20 First verify that y(x) satisfies the given differential equation. Then
determine a value of the constant C so that y(x) satisfies the given
initial condition.

y′ = x − y; y(x) = Ce−x + x − 1, y(0) = 10

Solution - The derivative of y(x) is:

y′(x) = −Ce−x + 1.

We have

x − y = x − (Ce−x + x − 1) = −Ce−x + 1.

So, the solution checks out. Solving for C we get:

10 = y(0) = Ce−0 + 0 − 1,

⇒ C = 11.

So, the function y(x) that satisfies the differential equation and the
given initial condition is:

y(x) = 11e−x + x − 1.
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1.1.45 Suppose a population P of rodents satisfies the differential equation
dP/dt = kP 2. Initially, there are P (0) = 2 rodents, and their number
is increasing at the rate of dP/dt = 1 rodent per month when there
are P = 10 rodents. How long will it take for this population to grow
to a hundred rodents? To a thousand? What’s happening here?

Solution - This is a separable differential equation, and so we can
rewrite it as:

dP

P 2
= kdt.

Taking the indefinite integral of both sides we get:

− 1

P
= kt + C.

Solving for P , and playing a bit fast and loose with the unknown
constant C, we get:

P (t) =
1

C − kt
.

Now, we need to solve for k and C. We’re told the initial population
of rodents is 2. So,

P (0) =
1

C
= 2,

⇒ C =
1

2
.

Plugging this in for C we get:
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P (t) =
2

1 − 2kt
.

We’re also told when P = 10 that
dP

dt
= 1. This means:

1 = k(10)2 ⇒ k =
1

100
.

Plugging
1

100
in for k in our solution gives us:

P (t) =
100

50 − t
.

The population will be at 100 rodents when t = 49. The population
will be at a thousand rodents when t = 49.9. What’s going on here is
that the solution has a vertical asymptote that goes to ∞ as t → 50−.
So, this is a “Doomsday” equation.
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Section 1.2 - Integrals as General and Particular

Solutions

1.2.1 Find a function y = f(x) satisfying the given differential equation
and the prescribed initial condition.

dy

dx
= 2x + 1; y(0) = 3.

Solution - If we take the antiderivative of both sides of the differential
equation:

dy

dx
= 2x + 16

we get:

y(x) = x2 + 16x + C.

Plugging in the initial condition y(0) = 3 we get:

y(0) = 02 + 16(0) + C = 3 ⇒ C = 3.

So, the solution is:

y(x) = x2 + 16x + 3.
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1.2.6 Find a function y = f(x) satisfying the given differential equation
and the prescribed initial condition.

dy

dx
= x

√
x2 + 9 y(−4) = 0.

Solution - If we take the antiderivative of both sides of the differential
equation:

dy

dx
= x

√
x2 + 9

we get:

y(x) =
1

3
(x2 + 9)

3

2 + C.

If we plug in the initial condition y(−4) = 0 we get:

y(−4) =
1

3
((−4)2 + 9)

3

2 + C =
1

3
(125) + C = 0,

and so

C = −125

3
.

The solution is:

y(x) =
1

3
(x2 + 9)

3

2 − 1

125
.
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1.2.11 Find the position function x(t) of a moving particle with the given
acceleration a(t), initial position x0 = x(0), and initial velocity v0 =
v(0).

a(t) = 50,

v0 = 10,

x0 = 20.

Solution - The velocity of the particle will be:

v(t) = 50t + C1.

We have

v(0) = 50(0) + C1 = 10,

so,

C1 = 10.

The position of the particle will be:

x(t) = 25t2 + 10t + C2.

We have

x(0) = 25(02) + 10(0) + C2 = 20,

so,

C2 = 20.

The final position function will be:

x(t) = 25t2 + 10t + 20.
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1.2.15 Find the position function x(t) of a moving particle with the given
acceleration a(t), initial position x0 = x(0), and initial velocity v0 =
v(0).

a(t) = 4(t + 3)2,

v0 = −1,

x0 = 1.

Solution - If we take the antiderivative of the acceleration function we
get:

v(t) =
4

3
(t + 3)3 + C1.

Using the initial condition v(0) = v0 = −1 we get:

4

3
(0 + 3)3 + C1 = −1,

so,

C1 = −37.

The velocity function will be:

v(t) =
4

3
(t + 3)3 − 37.

Taking the antiderivative of the velocity function we get:

x(t) =
(t + 3)4

3
− 37t + C2.
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Pluggin in the initial position x(0) = x0 = 1 we get:

x(0) =
(0 + 3)4

3
− 37(0) + C2 = 1,

so,

C2 = −26.

Our final position function is:

x(t) =
(t + 3)4

3
− 37t − 26.
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1.2.27 A ball is thrown straight downward from the top of a tall building.
The initial speed of the ball is 10m/s. It strikes the ground with a
speed of 60m/s. How tall is the building?

Solution - I’ll assume that the acceleration due to gravity is 10
m

s2
. The

equation for the ball’s velocity in the downward direction is:

v(t) = at + v0.

Here v0 = 10
m

s
, a = 10

m

s2
, and v(tf) = 60

m

s
. Solving this for tf we

get:

tf =

(

60m
s
− 10m

s

)

10m
s2

= 5s.

The total distance traveled will be:

x(t) =
1

2
at2 + v0t + x0.

Here x0 = 0 and we get:

x(tf ) =
1

2

(

10
m

s2

)

(5s)2 +
(

10
m

s

)

(5s) = 125m + 50m = 175m.
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1.2.35 A stone is dropped from rest at an initial height h above the surface
of the earth. Show that the speed with which it strikes the ground is
v =

√
2gh.

Solution - We could prove this using the conservation of energy. How-
ever, we should probably prove it using our distance equation. If
v0 = x0 = 0 then the total distance the stone travels is:

h =
1

2
gt2f .

Its final velocity will be:

v(tf) = gtf = g

√

2h

g
=

√

2gh.
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1.2.43 Arthur Clark’s The Wind from the Sun (1963) describes Diana, a space-
craft propelled by the solar wind. Its aluminized sail provides it with
a constant acceleration of 0.001g = 0.0098m/s2. Suppose this space-
craft starts from rest at time t = 0 and simultaneously fires a projec-
tile (straight ahead in the same direction) that travels at one-tenth of
the speed c = 3×108m/s of light. How long will it take the spacecraft
to catch up with the projectile, and how far will it have traveled by
then?

Solution - Set tf to be the time at which the spacecraft catches up with
the projectile. The total distance traveled by the spaceship will be:

x1(tf) =
1

2
at2f .

The total distance traveled by the projectile will be:

x2(tf ) = vtf .

When the spaceship catches up with the projectile, the distances are
the same, and we have:

vtf =
1

2
at2f .

Solving this for tf we get:

tf =
2v

a
≈ 6.122 × 109s.

So, about 194 years! The total distance traveled in that time will be:

vtf ≈ 1.837 × 1017m.

This is about 19.4 light years.1

1This is a very, very large distance. However, almost all the stars you see in the night
sky are much, much farther away than this!
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1.3.1 and 1.3.6 See Below

FIGURE 1.3.16.
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1.3.9 See Below
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1.3.11 Determine whether Theorem 1 does or does not guarantee existence
of a solution of the given initial value problem. If existence is guar-
anteed, determine whether Theorem 1 does or does not guarantee
uniqueness of that solution.

dy

dx
= 2x2y2 y(1) = −1.

Solution - The function f(x, y) is:

f(x, y) = 2x2y2.

Its partial derivative with respect to y is:

∂f

∂y
= 4x2y.

Both f(x, y) and
∂f

∂y
are continuous everywhere. So, there exists a

unique solution around any initial value (a, b), including (1,−1).
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1.3.15 Determine whether Theorem 1 does or does not guarantee existence
of a solution of the given initial value problem. If existence is guar-
anteed, determine whether Theorem 1 does or does not guarantee
uniqueness of that solution.

dy

dx
=

√
x − y y(2) = 2.

Solution - The function f(x, y) is:

f(x, y) =
√

x − y.

Its partial derivative with respect to y is:

∂f

∂y
= − 1

2
√

x − y
.

Both functions are continuous for x > y. At (2, 2) we have x = y, and

the function
∂f

∂y
is undefined. So, existence is not guaranteed.
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1.3.21 First use the method of Example 2 from the textbook to construct a
slope field for the given differential equation. Then sketch the solu
tion curve corresponding to the given initial condition. Finally, use
this solution curve to estimate the desired value of the solution y(x).
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More room for Problem 1.3.21, if you need it.
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1.3.29 Verify that if c is a constant, then the function defined piecewise by

1 0 x<c,
(x—c)3 >c

satisfies the differential equation y’ 3y for all x. Can you also
use the “left half” of the cubic y = (x — c)3 in piecing together a
solution curve of the differential equation? Sketch a variety of such
solution curves. Is there a point (a, b) of the xy-plane such that the
initial value problem y’ = 3y, y(a) = b has either no solution or a
unique solution that is defined for all x? Reconcile your answer with
Theorem 1.

yl-

.O

3(x-c)

O
3y
oI 1 Cc 6c.

cc a A I i-
y 5° 4 1G
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The function f(x, y) is:

f(x, y) = 3y
2

3 .

Its partial derivative with respect to y is:

∂f

∂y
=

2

y
1

3

.

The function f(x, y) is continuous everywhere. The function
∂f

∂y
is

continuous for y 6= 0. So, we’re guaranteed a local unique solution
if y 6= 0. For any (a, b) with b 6= 0 we’re guaranteed a local unique
solution.

There are no initial conditions for which there is a unique global so-
lution. Theorem 1 only guarantees us a unique local solution.
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Section 1.4 - Separable Equations and Applications

1.4.1 Find the general solution (implicit if necessary, explicit if convenient)
to the differential equation

dy

dx
+ 2xy = 0

Solution - We can rewrite the differential equation as:

dy

dx
= −2xy.

This is a separable equation, and so after a little algebra we can write
it as:

dy

y
= −2xdx.

Taking the antiderivative of both sides we get:

∫

dy

y
= −2

∫

xdx,

⇒ ln y = −x2 + C.

Exponentiating both sides, and being a little sloppy with the un-
known constant C,2 we get:

y = Ce−x2

.

2As always.
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1.4.3 Find the general solution (implicit if necessary, explicit if convenient)
to the differential equation

dy

dx
= y sin x

Solution - This is a separable equation, and we can rewrite it as:

dy

y
= sin xdx.

Taking the antiderivative of both sides we get:

∫

dy

y
=

∫

sin xdx,

⇒ ln y = − cos x + C.

Exponentiating both sides we get:

y = Ce− cos x.
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1.4.17 Find the general solution (implicit if necessary, explicit if conve-
nient) to the differential equation

y′ = 1 + x + y + xy.

Primes denote the derivatives with respect to x. (Suggestion: Factor
the right-hand side.)

Solution - We can factor the right-hand side of the equation above to
get:

y′ = (1 + x)(1 + y).

In this form it is obviously a separable differential equation, and we
can rewrite it as:

dy

1 + y
= (1 + x)dx.

If we take the antiderivative of both side we get:

∫

dy

1 + y
=

∫

(1 + x)dx,

⇒ ln (1 + y) =
x2

2
+ x + C.

Exponentiating both sides we get:

y + 1 = Ce
x
2

2
+x.

So, our final solution is:

y = Ce
x
2

2
+x − 1.
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1.4.19 Find the explicit particular solution to the initial value problem

dy

dx
= yex, y(0) = 2e.

Solution - This is a separable equation, and we can rewrite it as:

dy

y
= exdx.

Taking the antiderivative of both sides we get:

∫

dy

y
=

∫

exdx,

⇒ ln y = ex + C.

Exponentiating both sides we get:

y = Ceex

.

If we plug in y(0) = 2e and solve for C we get:

2e = y(0) = Cee0

= Ce1 = Ce.

So, we can see C = 2, and the solution to the initial value problem is:

y = 2eex

.
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1.4.31 Discuss the difference between the differential equations (dy/dx)2 =
4y and dy/dx = 2

√
y. Do they have the same solution curves? Why

or why not? Determine the points (a, b) in the plane for which the
initial value problem y′ = 2

√
y, y(a) = b has (a) no solution, (b) a

unique solution, (c) infinitely many solutions.

Solution - The solution curves for
dy

dx
= 2

√
y will be solution curves

for

(

dy

dx

)2

= 4y. However, so will the solution curves for
dy

dx
=

−2
√

y. So, no, they do not have the same solution curves.

The function 2
√

y is continuous for y ≥ 0. Its partial derivative with

respect to y,
1
√

y
, is continuous for y > 0.

The differential equation
dy

dx
= 2

√
y is separable, and we can solve it:

∫

dy
√

y
=

∫

2dx,

⇒ 2
√

y = 2x + C.

Solving this for y we get:

y = (x + C)2.

(a) - There will be no solution if b < 0.

(b) - There will be (locally) a unique solution for b > 0.

(c) - If b = 0 there will be infinitely many solutions. This is similar to
the situation we saw with Problem 1.3.29.
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1.4.35 (Radiocarbon dating) Carbon extracted from an ancient skull con-
tained only one-sixth as much 14C as carbon extracted from present-
day bone. How old is the skull?

Solution - We have the relation:

1

6
=

(

1

2

)
t

T 1

2 ,

where T 1

2

is the half-life of 14C, about 5,700 years.

If we solve this for t we get:

t =
T 1

2

ln
(

1

6

)

ln
(

1

2

) = 14, 734 years.

So, the skull is approximately 15,000 years old.
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1.4.53 Thousands of years ago ancestors of the Native Americans crossed
the Bering Strait from Asia and entered the western hemisphere.
Since then, they have fanned out across North and South America.
The single language that the original Native Americans spoke has
since split into many Indian “language families.” Assume that the
number of these language families has been multiplied by 1.5 every
6000 years. There are now 150 Native American language families
in the western hemisphere. About when did the ancestors of today’s
Native Americans arrive?

Solution - We have the relation:

150 = (1.5)
t

6000 .

If we solve this for t we get:

t = 6000

(

ln 150

ln 1.5

)

≈ 74, 000 years ago.
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1.4.68 The figure below shows a bead sliding down a frictionless wire
from point P to point Q. The brachistochrone problem asks what shape
the wire should be in order to minimize the bead’s time of descent
from P to Q. In June of 1696, John Bernoulli proposed this problem
as a public challenge, with a 6-month deadline (later extended to
Easter 1697 at George Leibniz’s request). Isaac Newton, then retired
from academic life and serving as Warden of the Mint in London, re
ceived Bernoulli’s challenge on January 29, 1697. The very next day
he communicated his own solution - the curve of minimal descent
time is an arc of an inverted cycloid - to the Royal Society of London.
For a modern derivation of this result, suppose the bead starts from
rest at the origin P and let y y(x) be the equation of the desired
curve in a coordinate system with the y-axis pointing downward.
Then a mechanical analogue of Snell’s law in optics implies that

sin ct
= constant

V

where c denotes the angle of deflection (from the vertical) of the tan
gent line to the curve - so cot c y’(x) (why?) - and v /2jj is the
bead’s velocity when it has descended a distance y vertically (from
KE = mv2 = mgy = -PE).

p
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(a) First derive from sin α/v = constant the differential equation

dy

dx
=

√

2a − y

y

where a is an appropriate positive constant.

Solution - Denote the constant sin α
v

with the letter C. Then, as

y′(x) = cos α =
cos α

sin α
=

cos α

vC
,

and

cos α =
√

1 − sin2 α =
√

1 − v2C2,

we have:

dy

dx
=

√
1 − v2C2

vC
.

Now, v =
√

2gy, so this equals:

dy

dx
=

√

1 − 2C2gy

C
√

2gy
=

√

1 − 2C2gy
√

2C2gy
=

√

2a − y

y
,

with a =
1

4C2g
.
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(b) Substitute y = 2a sin2 t, dy = 4a sin t cos tdt in the above differen-
tial equation to derive the solution

x = a(2t − sin 2t), y = a(1 − cos 2t)

for which t = y = 0 when x = 0. Finally, the substitution of θ =
2a in the equations for x and y yields the standard parametric
equations x = a(θ − sin θ), y = a(1 − cos θ) of the cycloid that is
generated by a point on the rim of a circular wheel of radius a
as it rolls along the x-axis.

Solution - The equation
dy

dx
=

√

2a − y

y
becomes

4a sin t cos tdt

dx
=

√

2a − 2a sin2 t

2a sin2 t
,

⇒ 4a sin t cos t

(

dt

dx

)

=

√

1 − sin2 t

sin2 t
=

cost

sin t
= cot t.

From this we get:

4a sin2 t

(

dt

dx

)

= 1,

⇒ 4a sin2 t =
dx

dt
.

If we use the trigonometric identity sin2 t = 1−cos 2t
2

this equation be-
comes:

2a(1 − cos (2t)) =
dx

dt
.
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Integrating this we get:

x(t) = a(2t − sin (2t)) + C.

If x(0) = 0 this implies C = 0, so

x(t) = a(2t − sin (st)).

On the other hand, we have

y(t) = 2a sin2 t = 2a

(

1 − cos (2t)

2

)

= a(1 − cos (2t)).

So, combining what we’ve derived we get:

x(t) = a(2t − sin (2t)) y(t) = a(1 − cos (2t)).

Q.E.D.
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