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Section 8.1 - Introduction and Review of Power

Series

8.1.2 - Find the power series solution to the differential equation

y′ = 4y,

and determine the radius of convergence for the series. Also, identify
the series solution in terms of familiar elementary functions.

Solution - We set up the power series

y(x) =

∞
∑

n=0

cnxn,

y′(x) =
∞
∑

n=1

ncnxn−1.

If we plug these into our differential equation we get:

∞
∑

n=1

ncnxn−1 − 4

∞
∑

n=0

cnx
n = 0

⇒
∞
∑

n=0

[(n + 1)cn+1 − 4cn]x
n = 0.

Using the identity principle from this we get the recursion relation:

cn+1 =
4cn

n + 1
.
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The first few terms are

c0 = c0,

c1 =
4c0

1
,

c2 =
4c1

2
=

42c0

2 × 1
,

c3 =
4c2

3
=

43c0

3 × 2 × 1
,

and in general,

cn =
4nc0

n!
.

The radius of convergence for our series is

lim
n→∞

∣

∣

∣

∣

cn

cn+1

∣

∣

∣

∣

= lim
n→∞

4n

n!
4n+1

(n+1)!

= lim
n→∞

n + 1

4
= ∞.

So, the power series converges for all x, and the solution to this dif-
ferential equation is:

y(x) = c0

∞
∑

n=0

4nxn

n!
= c0

∞
∑

n=0

(4x)n

n!
= c0e

4x.

But, we already knew that, didn’t we! :)
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8.1.8 - Find the power series solution to the differential equation

2(x + 1)y′ = y,

and determine the radius of convergence for the series. Also, identify
the series solution in terms of familiar elementary functions.

Solution - We set up the power series

y(x) =

∞
∑

n=0

cnxn,

y′(x) =
∞
∑

n=0

ncnxn−1.

If we plug these into our differential equation we get:

∞
∑

n=1

2ncnx
n +

∞
∑

n=1

2ncnxn−1 −
∞
∑

n=0

cnxn = 0

⇒
∞
∑

n=1

2ncnx
n +

∞
∑

n=0

(2(n + 1)cn+1 − cn)xn = 0.

Using the identity principle the x0 term gives us:

2c1 − c0 = 0 ⇒ c1 =
c0

2
.

The higher order terms give us:
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cn+1 =
(1 − 2n)cn

2(n + 1)
.

The first few terms are

c0 = c0,

c1 =
c0

2
,

c2 = − c1

2 · 2 = − c0

22 · 2!
,

c3 = − 3c2

2 · 3 =
3c0

23 · 3!
,

c4 = − 5c3

2(4)
= − 15c0

24 · 4!
,

and in general,

cn =
(−1)n+1(2n − 3)!!c0

2nn!
,

for n ≥ 2. Here (2n − 3)!! means the product of all the odd integers
up to (2n − 3). The radius of convergence for our series is

lim
n→∞

∥

∥

∥

∥

cn

cn+1

∣

∣

∣

∣

= lim
n→∞

c0(2n−3)!!(−1)n+1

2nn!
c0(2n−1)!!(−1)n+2

2n+1(n+1)!

= lim
n→∞

2(n + 1)

2n − 1
= 1.

So, the power series converges for all |x| < 1, and the solution to this
differential equation is:

y(x) = c0

(

1 +
x

2
+

∞
∑

n=2

(−1)n+1(2n − 3)!!

2nn!
xn

)

.
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Now, the Maclaurin series expansion for
√

1 + x is:

√
1 + x = 1 +

1

2
x +

1
2

(

1
2
− 1
)

2!
x2 +

1
2

(

1
2
− 1
) (

1
2
− 2
)

3!
x3 + · · · .

This is just our series above, and so we have that our solution is

y(x) = c0

√
1 + x.
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8.1.13 - Find two linearly independent power series solutions to the dif-
ferential equation

y′′ + 9y = 0,

and determine the radius of convergence for each series. Also, iden-
tify the general solution in terms of familiar elementary functions.

Solution - We set up the power series:

y(x) =
∞
∑

n=0

cnxn,

y′(x) =
∞
∑

n=0

ncnxn−1,

y′′(x) =
∞
∑

n=0

n(n − 1)cnx
n−2.

If we plug these into our differential equation we get:

∞
∑

n=2

n(n − 1)cnxn−2 +

∞
∑

n=0

9cnx
n = 0

⇒
∞
∑

n=0

[(n + 2)(n + 1)cn+2 + 9cn]xn = 0.

Applying the identity principle, the recurrence relation our coeffi-
cients must satisfy is:

cn+2 =
−9cn

(n + 2)(n + 1)
.
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This splits our series into even and odd terms. For the even terms
we have:

c0 = c0,

c2 =
−9c0

2 × 1
,

c4 =
−9c2

4 × 3
=

92c0

4 × 3 × 2 × 1
,

and in general,

c2n =
(−1)n32nc0

(2n)!
.

Using the same reasoning for the odd terms we get the general for-
mula:

c2n+1 =
(−1)n32nc1

(2n + 1)!
.

The radius of convergence for either of our series will be:

lim
n→∞

∣

∣

∣

∣

cn

cn+1

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(n + 1)

3kn

∣

∣

∣

∣

= ∞,

where kn =

{

c0

c1
n odd

c1

c0
n even

So, the two power series solutions converge for all x. The solutions
are:

8



y(x) = c0

∞
∑

n=0

(−1)n(3x)2n

(2n)!
+

c1

3

∞
∑

n=0

(−1)n(3x)2n+1

(2n + 1)!

= C1 cos (3x) + C2 sin (3x),

where C1, C2 are arbitrary constants.
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8.1.21 - For the initial value problem

y′′ − 2y′ + y = 0;

y(0) = 0, y′(0) = 1,

derive a recurrence relation giving cn for n ≥ 2 in terms of c0 or c1

(or both). Then apply the given initial conditions to find the values
of c0 and c1. Next, determine cn and, finally, identify the particular
solution in terms of familiar elementary functions.

Solution - Plugging in a power series solution into the ODE we get:

∞
∑

n=0

n(n − 1)cnx
n−2 − 2

∞
∑

n=0

ncnx
n−1 +

∞
∑

n=0

cnx
n = 0.

From this we get that c0 and c1 are arbitrary, and the rest of the coef-
ficients must satisfy the relation:

cn+2(n + 2)(n + 1) − 2cn+1(n + 1) + cn = 0

⇒ cn+2 =
2cn+1(n + 1) − cn

(n + 2)(n + 1)
.

Now, y(0) = c0 = 0, y′(0) = c1 = 1, and the higher-order terms are:

c2 =
2

2
= 1,

c3 =
2(1)(2) − 1

(3)(2)
=

1

2
=

1

2!
,

c4 =
2
(

1
2

)

(3) − 1

(4)(3)
=

1

6
=

1

3!
,
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c5 =
2
(

1
6

)

(4) − 1
2

(5)(4)
=

1

24
=

1

4!
,

and in general,

cn =
1

(n − 1)!
.

So,

y(x) =

∞
∑

n=1

xn

(n − 1)!
= x

∞
∑

n=1

xn−1

(n − 1)!
= x

∞
∑

n=0

xn

n!
= xex.
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8.1.25 - For the initial value problem

y′′ = y′ + y;

y(0) = 0, y′(0) = 1,

derive the power series solution

y(x) =
∞
∑

n=1

Fn

n!
xn

where {Fn}∞n=0 is the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . of Fibonacci num-
bers defined by F0 = 0, F1 = 1, Fn = Fn−2 + Fn−1 for n > 1.

Solution - If we plug a power series solution into the given differential
equation we get:

∞
∑

n=2

n(n + 1)cnx
n−2 =

∞
∑

n=1

ncnx
n−1 +

∞
∑

n=0

cnxn.

The constants c0 and c1 are determined by the initial conditions y(0) =
c0 = 0, and y′(0) = c1 = 1. For n ≥ 2 if we apply the identity principle
to our power series ODE above we get the recurrence relation:

cn+2 =
cn+1(n + 1) + cn

(n + 2)(n + 1)
.

Assume the coefficients in the series are of the form cn =
Fn

n!
up to

n + 1. Then
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cn+1 =

Fn+1(n+1)
(n+1)!

+ Fn

n!

(n + 2)(n + 1)
=

Fn+1 + Fn

(n + 2)!
=

Fn+2

(n + 2)!
.

So, by induction, we get

cn =
Fn

n!
,

and

y(x) =
∞
∑

n=1

Fn

n!
xn.

13



Section 8.2 - Series Solutions Near Ordinary Points

8.2.1 - Find a general solution in powers of x to the differential equation

(x2 − 1)y′′ + 4xy′ + 2y = 0.

State the recurrence relation and the guaranteed radius of conver-
gence.

Solution - A power series solution y(x) and its derivatives will have
the forms:

y(x) =

∞
∑

n=0

cnxn;

y′(x) =
∞
∑

n=1

ncnxn−1;

y′′(x) =

∞
∑

n=2

n(n − 1)cnx
n−2.

If we plug these into the ODE we get:

∞
∑

n=0

n(n − 1)cnx
n −

∞
∑

n=0

n(n − 1)cnxn−2 + 4

∞
∑

n=0

ncnxn + 2

∞
∑

n=0

cnx
n = 0.

This simplifies to:

∞
∑

n=0

[(n(n − 1) + 4n + 2)cn − (n + 2)(n + 1)cn+2]x
n = 0.
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From this we get the recurrence relation:

cn+2 =
(n2 + 3n + 2)

(n + 2)(n + 1)
cn =

(n + 2)(n + 1)

(n + 2)(n + 1)
cn = cn.

So, we specify c0 and c1, and the rest of the coefficients are deter-
mined by the above recurrence relation. This gives us a geometric
series, and the corresponding solution to the ODE is:

y(x) = c0

∞
∑

n=0

x2n + c1x
∞
∑

n=0

x2n =
c0 + c1x

1 − x2
.

The radius of convergence here is ρ = 1, which is the distance from
x = 0 to the closest root of x2 − 1, which is where the singular points
of our differential equation are.
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8.2.7 - Find a general solution in powers of x to the differential equation

(x2 + 3)y′′ − 7xy′ + 16y = 0.

State the recurrence relation and the guaranteed radius of conver-
gence.

Solution - Plugging a power series solution into our differential equa-
tion we get:

∞
∑

n=0

n(n− 1)cnx
n +

∞
∑

n=0

3n(n− 1)cnxn−2 −
∞
∑

n=0

7ncnx
n +

∞
∑

n=0

16cnx
n = 0.

Simplifying this we get:

∞
∑

n=0

[(n2 − 8n + 16)cn + 3(n + 2)(n + 1)cn+2]x
n = 0.

From this we get the recurrence relation:

cn+2 = − (n − 4)2

3(n + 2)(n + 1)
cn.

From this we can specify c0 and c1 arbitrarily, and the rest of the
coefficients are determined by the above recurrence relation.

The even terms are easy:

c0 = c0; c2 = − 16

3(2)(1)
c0 = −8

3
c0;

c4 = − 4c2

3(4 · 3)
=

8

27
c0; c6 = 0;
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and all higher-order even terms are 0.

The odd terms are a little more tricky:

c1 = c1; c3 = − 9

3(3 · 2)
c1;

c5 = − c3

3 · (5 · 4)
=

9

32(5 · 4 · 3 · 2 · 1)
c1; c7 = − c5

3 · (7 · 6)
= − 9

337!
;

c9 = − 9c7

3 · (9 · 8)
=

81c1

349!
;

and in general for n ≥ 3:

c2n+1 =
(−1)n[(2n − 5)!!]2c1

3n−2(2n + 1)!
c1.1

So, our solution is:

y(x) = c0

(

1 − 8

3
x2 +

8

27
x4

)

+

c1

(

x − x3

2
+

x5

120
+

∞
∑

n=3

(−1)n[(2n − 5)!!]2x2n+1

3n−2(2n + 1)!

)

.

The point x = 0 is
√

3 from the nearest root of x2 + 3 (its roots are
±
√

3i), so the guaranteed radius of convergence is
√

3.

1There is a typo in the answer in the back of the book here. The back of the book does
not square [(2n − 5)!!].
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8.2.14 - Find a general solution in powers of x to the differential equation

y′′ + xy = 0.2

State the recurrence relation and the guaranteed radius of conver-
gence.

Solution - Plugging a power series solution into the above ODE we
get:

∞
∑

n=2

n(n − 1)cnx
n−2 +

∞
∑

n=0

cnxn+1 = 0.

The x0 constant terms just shows up in the first sum for n = 2, so by
the identity principle 2c2 = 0 ⇒ c2 = 0.

The constants c0, c1 will be arbitrary, and after simplification our dif-
ferential equation becomes:

∞
∑

n=0

[(n + 3)(n + 2)cn+3 + cn]xn+1 = 0.

From this we get the recurrence relation:

cn+3 = − cn

(n + 3)(n + 2)
.

From this we get all the terms of the form c3n+2 will be 0, and c2 = 0,
while the other terms will be:

2An Airy equation.
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c3n =
(−1)n(1 · 4 · 7 · · · (3n − 2))

(3n)!
c0,

and similarly,

c3n+1 =
(−1)n(2 · 5 · 8 · · · (3n − 1))

(3n + 1)!
c1.

From this we get the solution:

y(x) = c0

∞
∑

n=0

(−1)n(1 · 4 · 7 · · · (3n − 2))

(3n)!
x3n +

c1

∞
∑

n=0

(−1)n(2 · 5 · 8 · · · (3n − 1))

(3n + 1)!
x3n+1.

There are no singular points in our differential equation, so this series
is guaranteed to converge everywhere.
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8.2.17 - Use power series to solve the initial value problem

y′′ + xy′ − 2y = 0;

y(0) = 1, y′(0) = 0.

Solution - If we plug in a power series solution into the differential
equation we get:

∞
∑

n=0

n(n − 1)cnx
n−2 +

∞
∑

n=0

ncnx
n − 2

∞
∑

n=0

cnxn = 0

→
∞
∑

n=0

[(n + 2)(n + 1)cn+2 + (n − 2)cn]xn = 0.

This gives us the recurrence relation:

cn+2 = − (n − 2)cn

(n + 2)(n + 1)
.

The even terms will be c0 = c0, c2 =
2c0

2 · 1 = c0, c4 = 0, and all other

even terms are 0.

The odd terms will be:

c1 = c1;

c3 =
c1

3 · 2 =
c1

3!
;

c5 = − c3

5 · 4 = −c1

5!
;
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and in general:

c2n+1 =
(−1)n+1(2n − 3)!!

(2n + 1)!
x2n+1.

So, the general solution is:

y(x) = c0(1 + x2) + c1

(

x +
x3

3!
+

∞
∑

n=2

(−1)n+1(2n − 3)!!

(2n + 1)!
x2n+1

)

.

Now, y(0) = c0 = 1, and y′(0) = c1 = 0. So, the solution to the IVP is:

y(x) = 1 + x2.
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8.2.32 - Follow the steps outlined in this problem to establish Rodrigues’s
formula

Pn(x) =
1

n!2n

dn

dxn
(x2 − 1)n

for the nth-degree Legendre polynomial.

(a) Show that v = (x2 − 1)n satisfies the differential equation

(1 − x2)v′ + 2nxv = 0.

Differentiate each side of this equation to obtain

(1 − x2)v′′ + 2(n − 1)xv′ + 2nv = 0.

(b) Differentiate each side of the last equation n times in succession
to obtain

(1 − x2)v(n+2) − 2xv(n+1) + n(n + 1)v(n) = 0.

Thus u = v(n) = Dn(x2 − 1)n satisfies Legendre’s equation of
order n.

(c) Show that the coefficient of xn in u is (2n)!/n!; then state why this
proves Rodrigues’ formula. (Note that the coefficient of xn in
Pn(x) is (2n)!/[2n(n!)2].)

Solution -

(a) - We know v′ =
d

dx
(x2 − 1)n = n(x2 − 1)n−12x.

So,
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(1 − x2)v′ + 2nxv = (1 − x2)n(x2 − 1)n−12x + 2nx(x2 − 1)n =
−2nx(x2 − 1)n + 2nx(x2 − 1)n = 0.

So, it satisfies the ODE. If we differentiate the ODE we get:

(1 − x2)v′′ − 2xv′ + 2nxv′ + 2nv = 0

⇒ (1 − x2)v′′ + 2(n − 1)xv′ + 2nv = 0.

(b) - We can prove this by induction. I will prove for k ≤ n the result
of differentiating

(1 − x2)v′′ + 2(n − 1)xv′ + 2nv = 0

k times is:

0 = (1 − x2)v(k+2) + 2(n − (k + 1))xv(k+1) +
k
∑

m=0

2(n − m)v(k).

For the base case k = 0 we get:

(1 − x2)v′′ + 2(n − 1)xv′ + 2nv = 0,

which is our original equation, so it checks out. Now, suppose
it’s true for up to k − 1 We differentiate

(1 − x2)v(k+1) + 2(n − k)xv(k) +
k−1
∑

m=0

2(n − m)v(k−1)

to get

(1 − x2)v(k+2) − 2xv(k+1) + 2(n − k)xv(k+1) + 2(n − k)v(k) +
k−1
∑

m=0

2(n − m)v(k)
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= (1 − x2)v(k+2) + 2(n − (k + 1))xv(k+1) +

k
∑

m=0

2(n − m)v(k).

So, the formula works. If we plug in k = n we get:

(1− x2)v(n+2) + 2(n− (n + 1))xv(n+1) +

[

2n
n
∑

m=0

1 − 2
n
∑

m=0

m

]

v(n)

= (1 − x2)v(n+2) − 2xv(n+1) +

(

2n(n + 1) − 2

(

n2 + n

2

))

v(n) =

(1 − x2)v(n+2) − 2xv(n+1) + (n2 + n)v(n)

= (1 − x2)v(n+2) − 2xv(n+1) + n(n + 1)v(n).

So, it works!

(c) Set

u = Dn(x2 − 1)n =
dn

dxn
(x2n + · · · ) (where the dots represent

lower order terms)

2n(2n − 1)(2n − 2) · · · (2n − (n − 1))xn + · · ·

=
(2n)!

n!
xn + · · · .

So, as u = v(n) satisfies Legendre’s equation of order n, u

n!2n
does

as well. As explained in the textbook there is only one polyno-
mial that satisfies Legendre’s equation of order n, namely

Pn(x) =

n
∑

k=0

(−1)k(2n − 2k)!

2nk!(n − k)!(n − 2k)!
xn−2k.

So, it must be kPn =
u

n!2n
where k is a constant. The highest

order term in Pn(x) is when k = 0 and is
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Pn(x) =
(2n)!

2nn!
xn + · · · .

Now,

u

n!2n
=

(2n)!

2n(n!)2
xn + · · · .

So, k = 1 , and indeed:

Pn(x) =
1

n!2n

dn

dxn
(x2 − 1)n.
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Section 8.3 - Regular Singular Points

8.3.1 - Determine whether x = 0 is an ordinary point, a regular singular
point, or an irregular singular point for the differential equation

xy′′ + (x − x3)y′ + (sin x)y = 0.

If it is a regular singular point, find the exponents of the differential
equation (the solutions to the indicial equation) at x = 0.

Solution - We can rewrite the differential equation as:

y′′ +
x − x3

x
y′ +

sin (x)

x
y = 0.

So,

P (x) =
x − x3

x
= 1 − x2

Q(x) =
sin (x)

x
= 1 − x2

3!
+

x4

5!
− · · · .

Both P (x) and Q(x) are analytic at x = 0. So, x = 0 is an ordinary
point.
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8.3.8 - Determine whether x = 0 is an ordinary point, a regular singular
point, or an irregular singular point for the differential equation

(6x2 + 2x3)y′′ + 21xy′ + 9(x2 − 1)y = 0.

If it is a regular singular point, find the exponents of the differential
equation (the solutions to the indicial equation) at x = 0.

Solution - We rewrite the differential equation as:

y′′ +
21x

6x2 + 2x3
y′ +

9(x2 − 1)

6x2 + 2x3
y = 0.

The coefficient functions are:

P (x) =
21x

6x2 + 2x3
,

Q(x) =
9(x2 − 1)

6x2 + 2x3
.

Both are singular at x = 0. Now,

p(x) = xP (x) =
21

6 + 2x
,

q(x) = x2Q(x) =
9(x2 − 1)

6 + 2x
.

Both are analytic at x = 0. So, x = 0 is a regular singular point.

p(0) = p0 =
21

6
=

7

2
,

q(0) = q0 = −3

2
.
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So, the indicial equation is:

r(r − 1) +
7

2
r − 3

2
= 0 ⇒ r2 +

5

2
r − 3

2
= (r + 3)

(

r − 1

2

)

.

So, the exponents of the differential equation (the roots of the indicial

equation) are r = −3,
1

2
.
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8.3.15 - If x = a 6= 0 is a singular point of a second-order linear differential
equation, then the substitution t = x − a transforms it into a differ-
ential equation having t = 0 as a singular point. We then attribute
to the original equation at x = a the behavior of the new equation
at t = 0. Classify (as regular or irregular) the singular points of the
differential equation

(x − 2)2y′′ − (x2 − 4)y′ + (x + 2)y = 0.

Solution - We can rewrite this differential equation as:

y′′ − x2 − 4

(x − 2)2
y′ +

x + 2

(x − 2)2
y = 0

⇒ y′′ − x + 2

x − 2
y′ +

x + 2

(x − 2)2
y = 0.

There is a singular point at x = 2. If we substitute t = x − 2 we get:

y′′ − t + 4

t
y′ +

t + 4

t2
= 0.

The point t = 0 is a singular point of this ODE. The functions:

p(t) = tP (t) = −(t + 4);

q(t) = t2Q(t) = t + 4;

are both analytic at t = 0. So, x = 2 is a regular singular point.
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8.3.18 - Find two linearly independent Frobenius series solutions (for x >
0) to the differential equation

2xy′′ + 3y′ − y = 0.

Solution - We rewrite the differential equation as:

y′′ +
3

2x
y′ − 1

2x
y = 0.

The coefficient functions are:

P (x) =
3

2x
;

Q(x) = − 1

2x
.

So, x = 0 is a singular point. To check if it’s a regular singular point
we examine the funcitons:

p(x) = xP (x) =
3

2
;

q(x) = x2Q(x) = −x

2
.

Both functions are analytic at x = 0, with leading terms p(0) = p0 =
3

2
, and q(0) = q0 = 0. The indicial equation is:

r(r − 1) +
3

2
r = r2 +

1

2
r = r

(

r +
1

2

)

.
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The roots of the indicial equation are r = 0,−1

2
. The Frobenius series

solution will have the form:

y(x) = xr

∞
∑

n=0

cnx
n =

∞
∑

n=0

cnx
n+r;

y′(x) =
∞
∑

n=0

cn(n + r)xn+r−1;

y′′(x) =
∞
∑

n=0

cn(n + r)(n + r − 1)xn+r−2.

If we plug these into our differential equation we get:

∞
∑

n=0

2cn(n+r)(n+r−1)xn+r−1+

∞
∑

n=0

3cn(n+r)xn+r−1−
∞
∑

n=0

cnx
n+r = 0.

The lowest order term in the series gives us the indicial equation. For
the higher order terms we get:

∞
∑

n=0

[(n + r + 1)(2n + 2n + 3)cn+1 − cn]xn+r = 0.

The term c0 is arbitrary, and the rest are determined by:

cn+1 =
cn

(n + r + 1)(2n + 2r + 3)
.

For r = −1

2
we get:
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cn+1 =
cn

(n + 1
2
)(2n + 2)

=
cn

(2n + 1)(n + 1)
,

and in general

cn+1 =
c0

(n + 1)!(2n + 1)!!
.

For r = 0 we get:

cn+1 =
cn

(n + 1)(2n + 3)
,

and in general

cn+1 =
c0

(n + 1)!(2n + 3)!!
.

So, our solution is:

y(x) = a0x
−

1

2

∞
∑

n=0

xn

(n + 1)!(2n + 1)!!
+ b0

(

1 +

∞
∑

n=1

xn

(n + 1)!(2n + 3)!!

)

.
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8.3.24 - Find two linearly independent Frobenius series solutions (for x >
0) to the differential equation

3x2y′′ + 2xy′ + x2y = 0.

Solution - We can rewrite the differential equation as:

y′′ +
2

3x
y′ +

1

3
y = 0.

This gives us coefficient functions:

P (x) =
2

3x
Q(x) =

1

3
.

The function Q(x) is analytic at x = 0, but not P (x), and therefore
x = 0 is a singular point. However, the functions:

p(x) = xP (x) =
2

3
q(x) = x2Q(x) =

x2

3
,

are both analytic at x = 0, with leading terms p(0) = p0 = 2
3

and
q(0) = q0 = 0. The corresponding indicial equation is:

r(r − 1) +
2

3
r = r2 − 1

3
r = r(r − 1

3
).

So, the roots of the indicial equation are r = 0,
1

3
. A Frobenius series

solution will have the form:
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y(x) = xr

∞
∑

n=0

cnx
n =

∞
∑

n=0

cnx
n+r;

y′(x) =
∞
∑

n=0

cn(n + r)xn+r−1;

y′′(x) =
∞
∑

n=0

cn(n + r)(n + r − 1)xn+r−2.

If we plug these into our differential equation we get:

3
∞
∑

n=0

cn(n + r)(n + r− 1)xn+r + 2
∞
∑

n=0

cn(n + r)xn+r +
∞
∑

n=0

cnx
n+r+2 = 0.

The xr term is:

3c0r(r − 1) + 2c0r = c0(3r
2 − r) = c0r(3r − 1).

If r satisfies the indicial equation then this is automatically 0, so c0 is
arbitrary. The xr+1 term is:

3c1(r + 1)r + 2c1(r + 1) = c1(3r
2 + 5r + 2).

The values r = 0,
1

3
are not roots of the polynomial in r above, so for

this term to be 0 we must have c1 = 0.

For the higher order terms we get the recurrence relation:

[3(n + r + 2)(n + r + 1) + 2(n + r + 2)]cn+2 + cn = 0,

⇒ cn+2 = − cn

(n + r + 2)(3n + 3r + 5)
.
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Now, all odd terms will be 0 as c1 = 0. As for the even terms, for
r = 0 we get:

a0 = a0,

a2 = − a0

2 · 5 ,

a4 = − a2

4 · 11
=

a0

(2 · 4)(5 · 11)
,

and in general,

a2n =
(−1)na0

2nn!(5 · 11 · · · (6n − 1))
.

For r =
1

3
we get:

b0 = b0,

b2 = − b0

7 · 2 ,

b4 =
b0

(7 · 13)(2 · 4)
,

b6 = − b0

(7 · 13 · 17)(2 · 4 · 6)
,

and in general,

b2n =
(−1)nb0

2nn!(7 · 13 · 17 · · · (6n + 1))
.

So, our solution is:
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y(x) = a0x
1

3

∞
∑

n=0

(−1)nx2n

2nn!(7 · 13 · · · (6n + 1))
+

b0

(

1 +

∞
∑

n=1

(−1)nx2n

2nn!(5 · 11 · · · (6n − 1))

)

.

36


