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Section 8.1 - Introduction and Review of Power
Series

8.1.2 - Find the power series solution to the differential equation

y =4y,

and determine the radius of convergence for the series. Also, identify
the series solution in terms of familiar elementary functions.

Solution - We set up the power series

FER
n=0
y'(z) = i nep,a" !
n=1

o [o.¢]
g ne,a”t — 4 E cpx’t =
n=1 n=0

= [(n+ 1)casr — 4eglz" = 0.

n=0
Using the identity principle from this we get the recursion relation:

4c,,
n4+1"

Cpnt1 =



The first few terms are

Co = Co,
400
cp = —
1 1 7
401 4200
Cy = — = ,
T 2 T 2x1
462 4300
Cyq = — = P —
5773 T 3x2x1

and in general,

4”00
Cp =

n!
The radius of convergence for our series is

471/

Bt Wl s n+1
= lmw— 1m
n—oo 2 ' n—o00

(n+1)!

lim

n—oo

= OQ.

Cn+1

So, the power series converges for all , and the solution to this dif-
ferential equation is:

= ¢pet®.

L 4rgn = (4a)"
PRI Se- o ot
= nl !

n=0

But, we already knew that, didn’t we! :)



8.1.8 - Find the power series solution to the differential equation

2(1’ + 1)y, =Y,

and determine the radius of convergence for the series. Also, identify
the series solution in terms of familiar elementary functions.

Solution - We set up the power series

o) = e,
n=0
y'(z) = i nepa" !
n=0

If we plug these into our differential equation we get:

Z 2ne, 2" + Z one, "t — Z e,z =0
n=1 n=1 n=0
= Z 2ne,a" + Z(2(n +1)cpi1 — cp)x™ = 0.
n=1 n=0
Using the identity principle the z° term gives us:
201—00:0:>01202—0.

The higher order terms give us:



1—2n)c,
Cn-i—l:( )

2n+1)
The first few terms are
Co = Co,
Co
1 = 51
C1 Co
Co = — = — ,
2 2.2 22. 9!
o — — 302 . 300
5T 2.3 23.3
503 1500
Cp = — = — ,
T2 244l

and in general,

(—=1)"(2n — 3)!ley
21|

Cp —

7

for n > 2. Here (2n — 3)!! means the product of all the odd integers
up to (2n — 3). The radius of convergence for our series is

co(2n—3)!1(-1)7+1
= lim . 22%(! ) = lim 72(n+1)
oo C@n=DI(=1)nH2 T T 2n — 1
27T (pr1)!

lim =1.

n—oo

Cn+1

So, the power series converges for all |z| < 1, and the solution to this
differential equation is:

B T o= (=D (2n - 3)
y(z) = co <1+§+; S " |.



Now, the Maclaurin series expansion for /1 + x is:

1(i-1 L -1)(L-2
Ve SRR NS [Ciud) Y IS LG L FI

This is just our series above, and so we have that our solution is

y(x) = covV1+ .



8.1.13 - Find two linearly independent power series solutions to the dif-
ferential equation

y" +9y =0,

and determine the radius of convergence for each series. Also, iden-
tify the general solution in terms of familiar elementary functions.

Solution - We set up the power series:

y(x) = Z ™,
n=0
y'(x) = i ne,z" 1,
n=0

If we plug these into our differential equation we get:

inn—l " 2+Z9cna: =0
n=2 n=0

= Z[(n +2)(n + 1)cpi2 + 9c, 2" = 0.
n=0

Applying the identity principle, the recurrence relation our coeffi-
cients must satisfy is:

—9¢,,
(n+2)(n+1)

Cny2 =

7



This splits our series into even and odd terms. For the even terms
we have:

Co = Co,
—900
Co =
2x 1’
—902 9200

AT X3 Ax3x2x1

and in general,

(—1)”32n00
(2n)!

Cop =

Using the same reasoning for the odd terms we get the general for-
mula:

(_1)n32ncl

N YA DT

The radius of convergence for either of our series will be:

: . |(n+1)
lim = lim = 00,
n— oo Cn+1 n—oo Bkn
€0
2 nodd
where k, = ¢ &
o« mneven

So, the two power series solutions converge for all z. The solutions
are:



)2n

= ()3 1 o= (—1)"(3z)%+!
y@)—%;w*?z (2n +1)!

= (' cos (3z) + Cysin (3x),

where C, C;, are arbitrary constants.



8.1.21 - For the initial value problem

y' =2 +y=0;

derive a recurrence relation giving c, for n > 2 in terms of ¢, or ¢
(or both). Then apply the given initial conditions to find the values
of ¢y and ¢;. Next, determine ¢, and, finally, identify the particular
solution in terms of familiar elementary functions.

Solution - Plugging in a power series solution into the ODE we get:

N n(n —1)c,a"? — 2 N ne, "t 4+ N e’ = 0.
—0 —0

n=0

From this we get that ¢y and ¢, are arbitrary, and the rest of the coef-
ficients must satisfy the relation:

Cni2(n+2)(n+1) = 2¢pp1(n+1)+¢, =0

2¢p1(n+1)—c,
(n+2)(n+1)

= Cn+2 =

Now, y(0) = ¢ =0, ¥'(0) = ¢; = 1, and the higher-order terms are:

02_2211
2
21)(2) -1 1 1
“TT B 2z
2(3)3)—-1 1 1
T We) 6w



(5)(4) 24 4V
and in general,
. 1
" (n—1)!
So,
> " > l.n—l e "
y(x)zzl(n—w :xz(n—l)' =ed e
n= n= n=0
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8.1.25 - For the initial value problem

y' =y +y

derive the power series solution

e e}

Mﬂzijgﬂ

n=1

where {F,,}>°  is the sequence 0,1, 1,2,3,5,8,13, ... of Fibonacci num-
bers defined by Fb=0F=1F,=F, >+ F,_4 forn > 1.

Solution - If we plug a power series solution into the given differential
equation we get:

o0 o0 o0
E n(n+ ez 2 = E ne ™t 4 E cpx”.
n=1 n=0

n=2

The constants ¢, and ¢, are determined by the initial conditions y(0) =
co = 0,and y'(0) = ¢; = 1. For n > 2if we apply the identity principle
to our power series ODE above we get the recurrence relation:

. Cnp1(n+1) + ¢y
T i+ 2)(n+1)

Assume the coefficients in the series are of the form ¢, = —7 up to
n:
n + 1. Then

12



Fn+1(”+1) _I_ &

(n+1)! n! Fn+1 + Fn o

Fn+2

T )t l) (n+2)

So, by induction, we get

and

13

 (n+2)0



Section 8.2 - Series Solutions Near Ordinary Points

8.2.1 - Find a general solution in powers of z to the differential equation
(2* — 1)y" + day’ + 2y = 0.

State the recurrence relation and the guaranteed radius of conver-
gence.

Solution - A power series solution y(z) and its derivatives will have
the forms:

WA S
n=0
y'(x) = i ne, " Y
n=1

If we plug these into the ODE we get:

inn—lcnx —inn—lcnx” 2+4chnx —i-Qchx =0.
n=0 n=0 n=0 n=0

This simplifies to:

[e.e]

S l(n(n = 1) + 4n+ 2)e, — (n+ 2)(n+ Dengola™ = 0.
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From this we get the recurrence relation:

_ (n*+3n+2) (n+2)(n+1)
Cn+2_(n—|—2)(n—|—1)cn_

So, we specify ¢y and c¢;, and the rest of the coefficients are deter-
mined by the above recurrence relation. This gives us a geometric
series, and the corresponding solution to the ODE is:

> > co+cix
0 1

y(x) = co E "+ oy E " = -
1—=x

n=0 n=0

The radius of convergence here is p = 1, which is the distance from
z = 0 to the closest root of 2* — 1, which is where the singular points
of our differential equation are.
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8.2.7 - Find a general solution in powers of z to the differential equation
(2 +3)y" — Twy + 16y = 0.

State the recurrence relation and the guaranteed radius of conver-
gence.

Solution - Plugging a power series solution into our differential equa-
tion we get:

in n—1)c,x —I—ZSn n—1)c,z"~ Z?ncnx +Zl6cnx =0.
n=0 n=0

Simplifying this we get:
D [(n* = 8n +16)cy + 3(n + 2)(n + 1)cp 2]z = 0.
n=0

From this we get the recurrence relation:

(a7
3n+2)(n+1)"

Cnt2 = —

From this we can specify ¢y and ¢, arbitrarily, and the rest of the
coefficients are determined by the above recurrence relation.

The even terms are easy:

16 . 80

Co = Cy, C — ——=Cp,

0 0 2 3(2><1> 0 3 0
402 8




and all higher-order even terms are 0.

The odd terms are a little more tricky:

9
C1 = ¢y, 03——3(3‘2)01,

o c3 B 9 o e Cs _ 9

T 3.4 32(5-4-3-2-1) 7 T 3.(7-6) 37
907 _8101_

Cg — —

3-(9-8) 3497

and in general for n > 3:

(=1)"[(2n — 5)!1]%c,
3n=2(2n + 1)!

Con4+1 =

So, our solution is:

8 8
y(x):c()(l—gx +2—7m>+

0 2n _ 5)”]2 2n+1
“ < +§ 3n 22n+1)! '

The point z = 0 is V/3 from the nearest root of 2> + 3 (its roots are

41/3i), so the guaranteed radius of convergence is v/3.

There is a typo in the answer in the back of the book here. The back of the book does

not square [(2n — 5)!1].
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8.2.14 - Find a general solution in powers of z to the differential equation
y' +axy =02

State the recurrence relation and the guaranteed radius of conver-
gence.

Solution - Plugging a power series solution into the above ODE we
get:

inn—lcnnz—l-zcn =
n=2

The 2° constant terms just shows up in the first sum for n = 2, so by
the identity principle 2c; = 0 = ¢, = 0.

The constants cy, ¢; will be arbitrary, and after simplification our dif-
ferential equation becomes:

o0

310+ 3) (1 + 2)enss + ez =0,

From this we get the recurrence relation:

(n+ 3)T(Ln +2)

Cn+3 = —

From this we get all the terms of the form c3,,;» will be 0, and ¢, = 0,
while the other terms will be:

2An Airy equation.

18



and similarly,

(-1)"(2-5-8---(3n—1))
(3n+1)!

C3n4+1 = C1.

From this we get the solution:

L (=D)(1-4-7---(3n—2)) 4,
o) =3 (3n)!< ),

= (L1258 (3n— 1)) g

_l_

There are no singular points in our differential equation, so this series
is guaranteed to converge everywhere.
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8.2.17 - Use power series to solve the initial value problem

y'tay —2y=0;

Solution - If we plug in a power series solution into the differential
equation we get:

inn—lcnm" 2+chnm —Qchx =0
n=0

— 3 [+ 2)(n + epsa + (n — 2)cy]2" = 0.

This gives us the recurrence relation:

o (n—2)c,
T+ 2)(n+ 1)
. 200
The even terms will be ¢y = ¢y, ca = 7.1 = co, ¢4 = 0, and all other
even terms are 0.
The odd terms will be:
C1 = €y
C1 . C1 .
“T 30T 30
=54 5

20



and in general:

(=)™ 2n =3 5
(2n 4+ 1)! '

Con4+1 =

So, the general solution is:

P (D) (2n = 3)! 2n+1
x .
31—~ (2n+1)!

x
y(x) = co(1 +22) + 1 <x+ — +

Now, y(0) = ¢ = 1, and y'(0) = ¢; = 0. So, the solution to the IVP is:

y(r) =1+ 2%

21



8.2.32 - Follow the steps outlined in this problem to establish Rodrigues’s
formula

1 d"

2 n
2o
o g @

Py(x) =

for the nth-degree Legendre polynomial.

(@) Show that v = (z? — 1)" satisfies the differential equation
(1 —2*)v + 2nzv = 0.
Differentiate each side of this equation to obtain
(1 —2*)" +2(n — 1)av' + 2nv = 0.

(b) Differentiate each side of the last equation n times in succession
to obtain

(1 = 22002 — 20D L n(n + 1 = 0,

Thus u = v™ = D"(22 — 1) satisfies Legendre’s equation of
order n.

(c) Show that the coefficient of 2" in u is (2n)!/n!; then state why this
proves Rodrigues” formula. (Note that the coefficient of 2" in
P.(z)is (2n)!/[2"(n!)?].)

Solution -
/ d 2 n 2 n—1
(@) - We know v' = %(:)3 — )" =n(z—1)"" 2.
So,

22



(1 — 220 + 2nav = (1 — 2H)n(z® — )" 22 4 2na(2? — 1)" =
—2nz(2? — 1)" + 2nz(2® — 1)" = 0.

So, it satisfies the ODE. If we differentiate the ODE we get:

(1 —2®)0" — 220" + 2nav’ + 2nv =0

= (1 —2°)0" +2(n — 1)z’ + 2nv = 0.

(b) - We can prove this by induction. I will prove for £ < n the result
of differentiating

(1—2*W" +2(n—1Dav' +2nv =0

k times is:

k
0=(1—-aHo*? 1 2(n — (k+1))zo® + Z 2(n —m)o®,

m=0

For the base case k£ = 0 we get:
(1 —2*)" +2(n — Dav' + 2nv =0,

which is our original equation, so it checks out. Now, suppose
it’s true for up to £ — 1 We differentiate

N

-1
(1 —2)o*) 1 9o(n — k)™ + 2(n — m)v*=Y
0

3
I

to get

(1 — 2?)w*2) — 200 * ) 4 9(n — k)2 * ) 4 2(n — k)o® +
k-1

Z 2(n — m)v®

m=0

23



k
= (1 —2?)0**? 1 2(n — (k4 1))zo*+Y +Z2
m=0
So, the formula works. If we plug in £ = n we get:

(1 — 2™ £ 9(n— (n + 1))z 4

2nZl—QZm]v”

2
= (1 — 2?0 — 220D 4 (2n(n+1) —2 (n i n)) o™ =

2
(1 — 2™ — 220+ 1 (0% 4 n)p™

= (1 — 2?0 — 220D 4 n(n 4 1),

So, it works!

(c) Set

n

d n
lower order terms)

u=D"(z*>—1)" = — (2" +---) (where the dots represent

2n(2n—1)2n—2)---(2n— (n—1))z" + - - -

2n)!
— ﬂxn _|_ e

n!
So, as u = v™ satisfies Legendre’s equation of order n, —- does
as well. As explained in the textbook there is only one polyno-
mial that satisfies Legendre’s equation of order n, namely

_ (=D*(2n —2k)! o
P"(x)_;2“k!(n—k)!(n—2k)!x '

So, it must be kP, = 'u2 where k is a constant. The highest
order term in P, (z) is when k =0and is

24



Fale) = T
Now,
u o (2n)!
DT A
So, k =1, and indeed:
1 a ., N
ba@) = T g (@ —
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Section 8.3 - Regular Singular Points

8.3.1 - Determine whether = 0 is an ordinary point, a regular singular
point, or an irregular singular point for the differential equation

zy" + (x — 2°)y + (sinz)y = 0.

If it is a regular singular point, find the exponents of the differential
equation (the solutions to the indicial equation) at z = 0.

Solution - We can rewrite the differential equation as:

x — sin (x
y// _|_ y/ + ( )y — 0
x x
So,
3
r—2x
P(x) = =1—22
@ =",
sin () 2 !
_ -1 4z .
Q) =— TR

Both P(z) and @Q)(x) are analytic at z = 0. So, z = 0 is an ordinary
point.

26



8.3.8 - Determine whether z = 0 is an ordinary point, a regular singular
point, or an irregular singular point for the differential equation

(62% + 22°)y" + 21y + 9(z* — 1)y = 0.

If it is a regular singular point, find the exponents of the differential
equation (the solutions to the indicial equation) at z = 0.

Solution - We rewrite the differential equation as:

" 21z, 9(z*—-1)

— 0.
622 1 2237 " 612 + 2287

The coefficient functions are:

21z

Plz)= ——

(z) 622 + 2237

9(x? — 1)

QW) = G

Both are singular at = 0. Now,
21
= P = —
plz) =zP(@) = 5=
9(z* — 1)
2 _

Both are analytic at z = 0. So, x = 0 is a regular singular point.



So, the indicial equation is:

1
r(r—1)+gr—g:O:>r2+gr—g:(r+3) (r—§).

So, the exponents of the differential equation (the roots of the indicial

1
equation) are r = —3, 3

28



8.3.15 - If = a # O is a singular point of a second-order linear differential
equation, then the substitution ¢ = x — a transforms it into a differ-
ential equation having ¢t = 0 as a singular point. We then attribute
to the original equation at x = a the behavior of the new equation
at t = 0. Classify (as regular or irregular) the singular points of the
differential equation

(x = 2)%" — (2" = 4)y' + (x +2)y = 0.

Solution - We can rewrite this differential equation as:

p @2 —4 = T+ 2 0
Y oo T —2pY T

b TH2 T+ 2

= 0.
z—27 +($—2)2y

=Y

There is a singular point at x = 2. If we substitute t = z — 2 we get:

ot bt

0.
T

The point ¢t = 0 is a singular point of this ODE. The functions:

p(t) = tP(t) = —(t +4);

q(t) =t*Q(t) =t +4;

are both analytic att = 0. So, x = 2 is a regular singular point.

29



8.3.18 - Find two linearly independent Frobenius series solutions (for x >
0) to the differential equation

2xy" + 3y —y =0.

Solution - We rewrite the differential equation as:

3
/i /
2 - —y=0
v Qxy Qxy
The coefficient functions are:
3
Pz) = 5—;
(z) 5
1
Qr) = o

So, x = 0 is a singular point. To check if it’s a regular singular point
we examine the funcitons:

Both functions are analytic at + = 0, with leading terms p(0) = p, =

g, and ¢(0) = go = 0. The indicial equation is:

3 1 1
r(r—1)+§7‘:7‘2+§7":r<7’+§).

30



1
The roots of the indicial equation are r = 0, — 5 The Frobenius series

solution will have the form:

y(z) =" Z cp = Z cnx™;
n=0 n=0
y'(z) = Z cn(n + )"t
n=0

y//(x) = Z Cn(n + T’)(n +r— 1):1:’"+T_2,

n=0

If we plug these into our differential equation we get:

Z 2c,(n+r)(n+r—1)z"" "+ Z 3cp(nr)z"t Tt — Z cpx" " = 0.
n=0 n=0

n=0

The lowest order term in the series gives us the indicial equation. For
the higher order terms we get:

[e.9]

D [(n+r+1)2n+ 20+ 3)cps — cuJ2™ =0.
n=0

The term ¢ is arbitrary, and the rest are determined by:

Cn
n+r+1)2n+2r+3)

1
Forr = —5 we get:

31



Cn B Cn
Gl = (n+H@En+2)  @n+1)(n+1)

and in general

T D2

For r = 0 we get:

Cn
et = (n+1)(2n+3)’

and in general

= i )2n )

So, our solution is:

1l " = z"
y(z) = a0z ; ¥ DlEn+ D0 T (1 - ; CESVIC 3)!1)'
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8.3.24 - Find two linearly independent Frobenius series solutions (for x >
0) to the differential equation

32%y" + 2y’ + 2%y = 0.
Solution - We can rewrite the differential equation as:
2 1
7 /
+—y' +-y=0.
Y 3z Y 3 Y

This gives us coefficient functions:

The function @(z) is analytic at z = 0, but not P(x), and therefore
x = 0 is a singular point. However, the functions:

pl) =xP() = = qlz) = PQlz) = =

are both analytic at 2 = 0, with leading terms p(0) = py = 2 and
q(0) = go = 0. The corresponding indicial equation is:

1 .
So, the roots of the indicial equation are r = 0, 3 A Frobenius series
solution will have the form:
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o0

o0
y(x) =" E 't = g e,
n=0

n=0

y'(x) = Z ca(n 4+ 7)™t
n=0

y//(q;) = Z Cn(’n, + T)(n +r— 1)xn+r—2.

n=0

If we plug these into our differential equation we get:

3 Z cn(n+r)(n+r—1)2"""+2 Z Co(n+7)a" " + Z cpx™ T = 0.

n=0 n=0 n=0
The 2" term is:
3cor(r — 1) + 2cor = co(3r* — 1) = cor(3r — 1).

If r satisfies the indicial equation then this is automatically 0, so ¢ is
arbitrary. The z"*! term is:

3ci(r+ 1)r +2¢1(r +1) = ¢, (3r* + 5r + 2).

1
The values r = 0, 3 are not roots of the polynomial in r above, so for

this term to be 0 we must have ¢; = 0.

For the higher order terms we get the recurrence relation:

Bn+r+2)(n+r+1)+2(n+r+2)cp2+c, =0,

Cn
(n+r+2)3n+3r+5)

= Cn+2 = —
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Now, all odd terms will be 0 as ¢; = 0. As for the even terms, for
r =0 we get:

Qo = Qo,
a o _ﬂ
2 — 9. 5/
= — az Qo
T4 (224611
and in general,
o — (=1)"ao
2 ml(5 11 (6n — 1))
1
Forr = 3 we get:
bO = bO/
bo
by = ———
2 72/
b=
YT (713)(2-4)
be = — %
T (T-13-17)(2-4-6)
and in general,
—1)"
b2n ( ) bO

T 2mN(T-13-17- - (6n+ 1))

So, our solution is:
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y(l’) —a g;% i (_1)n;1;'2n +
0 = 2mnl(7- 13-+ - (6n + 1))

0o (—1)"2}2n
bo <1 + ; 2“n!(5 <11 - ~-(6n_ 1)))
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