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Section7.4-1,5, 10, 19, 31
Section 7.5-1, 6, 15, 21, 26
Section 7.6 -1, 6,11, 14, 15



Section 7.4 - Derivatives, Integrals, and Products
of Transforms

7.4.1 - Find the convolution f(t) x g(¢) of the functions

Solution - Using the definition of convolution we get:

t tz
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f(t)*g(t):/(] TdT = %




7.4.5 - Find the convolution f(¢) * g(¢) of the functions

Solution -

t t
ft)xg(t) = / e et =T dr = e“t/ dr = Te“t|6 = te™,
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7.4.10 - Apply the convolution theorem to find the inverse Laplace trans-
form of the function

Solution - We have

Fls) = (i) <ﬁ) _ E(t)%ﬁ(sin(kt)).
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From this we get that our function f(¢) is the convolution:

(1) = %(t i sin (kt)) = %/0 (t — ) sin (hr)dr
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7.4.19 - Find the Laplace transform of the function

Solution - We use the relation

c (@) - [ f)as,

where (o) = L(f(t)).

For f(t) = sin (kt) we have

L(sin (t)) = /

and therefore

sin(t)\  [* do | |
E( ; )—/S 02+1—tan ()3

=tan ' (00) —tan"' (s) = = —tan"! (s).

This is a correct and perfectly acceptable final answer, but using
some trig identities we could also write it as:

1
g —tan~!(s) = tan™* (;)



7.4.31 - Transform the given differential equation to find a nontrivial so-
lution such that z(0) = 0.

ta" — (4t + 1)z’ +2(2t + 1)z = 0.

Solution - Using what we know about the Laplace transforms of deriva-
tives we have:

L(z") = s°X(s) —k, where k = 2/(0),

Using these relations and Theorem 7.4.2 from the textbook we get

L(tx") = —dils(sQX(s) — k) = —s2X'(s) — 25X (s),

L(—tx') = sX'(s) + X(s),

L(tr) = —X'(s).
So, the ODE becomes

(s —4s +4)X'(s) + (35 — 6)X(s) = 0,
= (s —2)°X'(s) +3(s —2)X(s) =0,

3
s—2

= X'(s) + X(s) =0.

We can rewrite this as:



Integrating both sides we get:

In(X(s))=-3In(s—2)+C

The inverse Laplace transform of X (s), our solution, is:
z(t) = Ce*'t?.

For this inverse Laplace transform we use the translation theorem

and the relation £7! (%) = {2,
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Section 7.5 - Periodic and Piecewise Continuous
Input Functions

7.5.1 - Find the inverse Laplace transform f(t) of the function

Solution - Using the translation theorem

e Fe) =27 (e (5)) =t =97(e-9),

f(t) =u(t—3)(t - 3).

Graph:

T w (£-7) (£-1)

& —t— >
{.
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7.5.6 - Find the inverse Laplace transform f(t) of the function

se”®

s2+ 72’

F(s) =

Solution - Again applying the translation formula we have

s
§2 4+ 72

UFE) = £ (e (5 ) ) = ute- s - ),

where f(t) = £ (#) = cos (rt).
So,

LY(F(s)) = u(t — 1) cos (n(t — 1)).
Graph:

ul -) cos (7 (1))
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7.5.15 - Find the Laplace transform of the function

f(t) =sintif 0 <t < 3m; f(t) =0ift > 3.

Solution - We can write the function defined above using step func-
tions as

sin (¢)(u(t) — u(t — 37)).

If we use the identity sin (¢) = —sin (¢ — 37) we can rewrite the above
equation as

sin (t)u(t) + sin (t — 37)u(t — 3).

So, the Laplace transform will be:

1 —37s
L(u(t)sin (t) + u(t — 3m)sin (¢t — 37)) = 5 + 362 —
1
o241
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7.5.21 - Find the Laplace transform of the function

Fl)=tift<1; f(t)=2—tif 1 <t <2 f(t)=0ift > 2.

Solution - We can write the function as

t t<1
fy=X 2—t 1<t<2
0 t>2

Using step functions we can write this as:

FE) =t —ult — 1)t +ult —1)(2—t) —ult —2)(2 —t)

—t—2(t— Du(t—1) + (t — 2)ult — 2).

The Laplace transform of this function will be:

52 52
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7.5.26 - Apply Theorem 2 to show that the Laplace transform of the saw-

tooth function f(t) pictured below is

v

Solution - The period here is a. So,

1 a ¢ —st
- / ° _dt.
l1—e2 Jy, a

Calculating the integral we get:
a te—st t —st
/ dt = — =%
0o a as
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Inpulses and Delta Functions

7.6.1 - Solve the initial value problem

2+ 4z = 0(¢);

and graph the solution z(t).

Solution - Taking the Laplace transform of both sides we get:
s*X(s) +4X(s) =1
1 1 2
=X =57173 (32+4)'

So,

() = %sin (20).
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7.6.6 - Solve the initial value problem

2" + 9z = 6(t — 3m) + cos 3t;

and graph the solution z(t).
Solution - Taking the Laplace transform of both sides:

S

2X 9X — —3ms
s°X(s)+9X(s)=e +s2+9

6—37rs s

T (s2+9)%

= X(s) =

The inverse Laplace transform is

oo ( e ) _ %u(t — 3)sin (3(t — 31)),

s24+9

= ((S2j_9)2) _ tsin6(3t).

So,

o(t) = tsin (3t) — 2u(t —637T) sin (3(t — 37?)).
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7.6.11 - Apply Duhamel’s principle to write an integral formula for the
solution of the initial value problem

a" + 62" + 8z = f(t);

z(0) = 2/(0) = 0.

Solution - Taking the Laplace transform of both sides we get:

s*X (s) +6sX(s) +8X(s) = F(s),

So,
F(s)
X = -7 = F
() s2+6x + 8 W(s)F(s),
where
1 1
Wis) = s2+65+8  (s+3)2—1
We have
LY (W(s)) = e 3 sinh (t),

and so,
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7.6.14 - Verify that u/(t — a) = §(t — a) by solving the problem

' =0(t —a);

z(0) =0

to obtain z(t) = u(t — a).

Solution - Taking the Laplace transform of both sides we get

sX(s) =e .

So,

where

So,

17



7.6.15 - This problem deals with a mass m on a spring (with constant k)
that receives an impulse py = muv, at time ¢t = 0. Show that the initial
value problems

mz" + kx = 0;

2(0) =0, 2'(0) = v

and

have the same solution. Thus the effect of pyd(0) is, indeed, to impart
to the particle an initial momentum py.

Solution - The first problem has the solution

o ({E2) v 50,

We use the initial conditions to solve for the unknown coefficients ¢;
and c,. Plugging in ¢t = 0 we get:

.I'(O) = (1 = 0.

Calculating 2'(t) and plugging in t = 0 we get:
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So,

-fFen )

On the other hand, if we examine the other differential equation in-
volving the delta function, and take the Laplace transform of both
sides we get:

So, the ODEs have the same solution.
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