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Today I’m not going to introduce any new material. Instead, I’m just
going to work some difficult problems because I know many of you are
struggling with some of the material from chapters 8 and 9. Chapter 8 in
particular. So, I figured it might be helpful to see a few more problems
worked out in detail.

Series Solutions Near Ordinary Points

Example - Find the general solution to the differential equation below in
terms of power series in x.

y′′
− x2y′

− 3xy = 0.

7

Solution - We first note that as the coefficient in front of y′′ is a constant,
and the coefficients in front of the lower order terms are polynomials, the
functions P (x) = −x2 and Q(x) = −3x are analytic at x = 0, and so 0 is an
ordinary point of the differential equation.

So, we assume that we can find a solution of the form:

y(x) =
∞
∑

n=0

c
n
xn

y′(x) =
∞
∑

n=1

nc
n
xn−1

1



y′′(x) =
∞
∑

n=2

n(n − 1)c
n
xn−2.

If we plug these values into our differential equation we get:

∞
∑

n=2

n(n − 1)c
n
xn−2

− x2
∞
∑

n=1

nc
n
xn−1

− 3x

∞
∑

n=0

c
n
xn = 0.

Multiplying through this becomes:

∞
∑

n=2

n(n − 1)c
n
xn−2

−

∞
∑

n=1

nc
n
xn+1

−

∞
∑

n=0

3c
n
xn+1 = 0

Now, the only place we’re going to have an x0 term is in the first sum,
when n = 2, and so given the x0 coefficient must be 0 we get c2 = 0.

For higher order terms all of our sums are going to enter into the calcu-
lation, and if we shift the index on the first one by 3, and note that starting
the second series at 0 is the same as starting it at 1, we get:

∞
∑

n=0

[(n + 3)(n + 2)c
n+3 − nc

n
− 3c

n
]xn+1 = 0.

The coefficient of xn+1 must be 0 for all n, and so solving this recursion
relation gives us:

c
n+3 =

c
n

n + 2
.

We note this relation places no restriction on ther terms c0 and c1, so
these terms are arbitrary, and represent the arbitrary constants in our gen-
eral solution.1

1“Arbitrary” is perhaps the wrong word here. More precisely, they’d be determined
by the initial conditions of our system.
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Now, in some sense we’re done, in that we’ve figured out how to repre-
sent every term in our power series in terms of our two arbitrary constants
c0 and c1. However, if possible we’d like to derive a closed form solution
for our terms.

If we take a look at our first few terms we get:

c3 =
c0

2
,

c4 =
c1

3
,

c5 =
c2

4
= 0,

c6 =
c3

5
=

c0

5 × 2
,

c7 =
c4

6
=

c1

6 × 3
,

c8 =
c5

7
= 0,

c9 =
c6

8
=

c0

8 × 5 × 2
,

c10 =
c7

9
=

c1

9 × 6 × 3
,

...

From these first few terms we can already see our pattern emerging.
This pattern is:

c3n
=

c0

(3n − 1) × (3n − 4) × · · · × 5 × 2
for n > 0,

c3n+1 =
c1

3n × (3n − 3) × · · · × 6 × 3
=

c1

3nn!
,

c3n+2 = 0.

So, our closed form solution is:
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y(x) = c0

(

1 +

∞
∑

n=1

x3n

(3n − 1) × (3n − 4) × · · · × 5 × 2

)

+ c1

∞
∑

n=0

x3n+1

3nn!
.

Series Solutions Near Regular Singular Points

Example - Find the general solution to the differential equation:

2xy′′
− y′

− y = 0.

Solution - First we note that if we divide everything through by 2x the
coefficients in front of both y′ and y are not analytic at x = 0. However,
p(x) = xP (x) = −1/2 and q(x) = x2Q(x) = −x/2 are, so x = 0 is a regular
singular point.

The constant term of p(x) is −1/2, while the constant term of q(x) is 0.
So, the indicial equation is:

r(r − 1) −
1

2
r = 0,

which has solutions r = 0 and r = 3/2. As the difference between
these two solutions is not an integer, we know we’ll be able to find two
Frobenius series solutions.

Our Frobenius series solutions will be of the form:

y(x) = xr

∞
∑

0

c
n
xn =

∞
∑

n=0

c
n
xn+r,

y′(x) =
∞
∑

n=0

(n + r)c
n
xn+r−1,

y′′(x) =
∞
∑

n=0

(n + r)(n + r − 1)c
n
xn+r−2.
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Plugging these into our differential equation gives us:

∞
∑

0

2(n + r)(n + r − 1)c
n
xn+r−1

−

∞
∑

n=0

(n + r)c
n
xn+r−1

−

∞
∑

0

c
n
xn+r = 0.

Now, the lowest order term is xr−1, and the coefficient there is:

[r(r − 1) − r/2]c0.

For our two values of r this is automatically satisfied for any c0 (it’s just
c0 multiplied by the indicial equation, which our two values of r solve by
definition), and so c0 is arbitrary.

For the higher order terms, simplifying the above series gives us:

∞
∑

n=1

[(2(n + r + 1)(n + r) − (n + r + 1))c
n+1 − c

n
]xn+r = 0.

Each of the xn+r coefficients must be 0, and so we get the recursion
relation:

c
n+1 =

c
n

2(n + r + 1)(n + r) − (n + r + 1)
.

Plugging in our values of r we get, for r = 0:

c
n+1 =

c
n

2(n + 1)n − (n + 1)
=

c
n

(2n − 1)(n + 1)
.

We note that for no integer value of n ≥ 1 is the denominator 0, so this
defines our series for all values of n for which we’re interested.

If we plug in r = 3/2 we get:

c
n+1 =

c
n

(n + 1)(2n + 5)
.
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We again note that for no integer value of n ≥ 1 is the denominator 0,
so this again defines our series for all n in which we’re interested.

Now, as mentioned earlier, we could say we’re done here. However,
let’s see if we can find a closed form solution for our series.

if we examine the r = 0 terms we get:

c1 = −
c0

1
,

c2 = −
c1

2
= −

c0

2
,

c3 = −
c2

3 × 3
= −

c0

(3 × 1) × (3 × 2 × 1)
,

c4 = −
c3

5 × 4
= −

c0

(5 × 3 × 1) × (4 × 3 × 2 × 1)
,

...

We can see the pattern here, and so we get:

c
n

=

−
c0

((2(n − 1) − 1) × (2(n − 1) − 3) × · · · × 3 × 1) × (n × (n − 1) × · · · × 2 × 1)

= −
c02

n−1(n − 1)!

(2(n − 1))!n!
= −

c02
n−1

n × (2(n − 1))!
.

So, one of our Frobenius solutions is:

y1(x) = c0

(

1 −

∞
∑

n=1

xn2n−1

n × (2(n − 1))!

)

.

On the other hand, for our r = 3/2 series we get:

6



c1 =
c0

1 × 5
,

c2 =
c1

2 × 7
=

c0

(2 × 1) × (7 × 5)
=

3c0

(2 × 1) × (7 × 5 × 3 × 1)
,

c3 =
c2

3 × 9
=

3c0

(3 × 2 × 1) × (9 × 7 × 5 × 3 × 1)
,

...

We can already see where this is going. The denominator in each term
is just n! multiplied by the product of the first n + 2 odd terms. Writing
this out in closed form we get:

c
n

=
3c0

(

(2(n+2))!
2n+2(n+2)!

)

n!
=

3(n + 2)(n + 1)2n+2c0

(2(n + 2))!
.

So, our second Frobenius solution is:

y2(x) = c0x
3

2

(

1 +

∞
∑

n=1

3(n + 2)(n + 1)2n+2xn

(2(n + 2))!

)

.

Using these we see, when the smoke clears, our general solution is:

y(x) =

c0

(

1 −

∞
∑

n=1

xn2n−1

n × (2(n − 1))!

)

+ c1x
3

2

(

1 +

∞
∑

n=1

3(n + 2)(n + 1)2n+2xn

(2(n + 2))!

)

.

Where we’ve renamed our second constant c1 so as to not give it the
same symbol as our first constant.
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Calculating Fourier Series

Example - Calculate the Fourier series for the periodic function f(t) where
one period is given by:

f(t) = t, −2 < t < 2.

Solution - This function is periodic with period 4, so L = 4/2 = 2. So,
the Fourier series for this function will be:

a0

2
+

∞
∑

n=1

(

a
n
cos

(

nπt

2

)

+ b
n
sin

(

nπt

2

))

,

where the constants are given by:

a
n

=
1

2

∫ 2

−2

t cos

(

nπt

2

)

dt;

b
n

=
1

2

∫ 2

−2

t sin

(

nπt

2

)

dt.

For any of the a
n

terms we note that the integrand is an odd function,
and so the integral will be 0. As for the b

n
we get:

b
n

=
1

2

∫ 2

−2

t sin

(

nπt

2

)

dt =

∫ 2

0

t sin

(

nπt

2

)

dt.

Integrating these by parts we get:

∫

t sin

(

nπt

2

)

dt =
4

n2π2
sin

(

nπt

2

)

−
2

nπ
t cos

(

nπt

2

)

.

If we evaluate this at the appropriate limits we get:
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b
n

=

∫ 2

0

t sin

(

nπt

2

)

dt = −
4

nπ
(−1)n =

4(−1)n+1

nπ
.

So, our Fourier series will be:

∞
∑

n=1

4(−1)n+1

nπ
sin

(

nπt

2

)

=
4

π

(

sin

(

πt

2

)

−
1

2
sin

(

2πt

2

)

+
1

3
sin

(

3πt

2

)

− · · ·

)

.
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