Math 2280 - Lecture 4: Separable Equations and Applications

Dylan Zwick

Spring 2013

For the last two lectures we've studied first-order differential equations in standard form

$$
y^{\prime}=f(x, y) .
$$

We learned how to solve these differential equations for the special situation where $f(x, y)$ is independent of the variable y, and is just a function of $x, f(x)$. We also learned about slope fields, which give us a geometric method for understanding solutions and approximating them, even if we cannot find them directly.

Today we're going to discuss how to solve first-order differential equations in standard form in the special situation where the function $f(x, y)$ is separable, which means we can write $f(x, y)$ as the product of a funciton of x, and a function of y.

The exercises for this section are:

Section 1.4-1, 3, 17, 19, 31, 35, 53, 68

Separable Equations and How to Solve Them

Suppose we have a first-order differential equation in standard form:

$$
\frac{d y}{d x}=h(x, y) .
$$

If the function $h(x, y)$ is separable we can write it as the product of two functions, one a function of x, and the other a function of y. So,

$$
h(x, y)=\frac{g(x)}{f(y)} .
$$

In this situation we can manipulate our differtial equation to put everything with a y term on one side, and everything with an x term on the other:

$$
f(y) d y=f(x) d x
$$

From here we can just integrate both sides of the equation, and then solve for y as a funciton of x !

So, for example, suppose we're given the differential equation

$$
\frac{d P}{d t}=P^{2}
$$

We can rewrite this equation as

$$
\frac{d P}{P^{2}}=d t
$$

and then integrate both sides of the equation to get

$$
-\frac{1}{P}=t+C
$$

Solving this for P as a function of t gives us

$$
P(t)=\frac{1}{C-t} .{ }^{1}
$$

Note that this function has a vertical asymptote as t approaches C. If this is a population model, this is called doomsday!

Examples of Separable Differential Equations

Suppose we're given the differential equation

$$
\frac{d y}{d x}=\frac{4-2 x}{3 y^{2}-5}
$$

This differential equation is separable, and we can rewrite it as

$$
\left(3 y^{2}-5\right) d y=(4-2 x) d x
$$

If we integrate both sides of this differential equation

$$
\int\left(3 y^{2}-5\right) d y=\int(4-2 x) d x
$$

we get

$$
y^{3}-5 y=4 x-x^{2}+C .
$$

This is a solution to our differential equation, but we cannot readily solve this equation for y in terms of x. So, our solution to this differential equation must be implicit.

[^0]If we're given an initial value, say $y(1)=3$, then we can easily solve for the unknown constant C :

$$
3^{3}-5(3)=4(1)-1^{2}+C \Rightarrow C=9
$$

So, around the point $(1,3)$ the differential equation will have the unique solution given implicitly by the curve defined by

$$
y^{3}-5 y=4 x-x^{2}+9
$$

Example - Find all solutions to the differential equation

$$
\frac{d y}{d x}=6 x(y-1)^{\frac{2}{3}} .
$$

More room for the example.

A very common, and simple, type of differential equation that is used to model many, many things ${ }^{2}$ is

$$
\frac{d x}{d t}=k x
$$

where k is some constant.
Now, this is a separable equation, and so it can be solved by our methods. First, we rewrite it as

$$
\frac{d x}{x}=k d t
$$

and then integrate both sides

$$
\int \frac{d x}{x}=\int k d t
$$

to get

$$
\ln x=k t+C .
$$

If we then exponentiate both sides we get

$$
x(t)=e^{k t+C}=e^{C} e^{k t}=C e^{k t} . .^{3}
$$

So, the solution to our differential equation is exponential growth (if $k>0$) or exponential decay (if $k<0$). If $k=0$ the answer is just a boring unknown constant.

[^1]Radioactive decay is quite accurately measured by an exponential decay function. For ${ }^{14} C$ decay, the decay constant is $k \approx-0.0001216$ if t is measured in years.

Example - Carbon taken from a purported relic of the time of Christ contained 4.6×10^{10} atoms of ${ }^{14} C$ per gram. Carbon extracted from a presentday specimen of the same substance contained 5.0×10^{10} atoms of ${ }^{14} C$ per gram. Compute the approximate age of the relic. What is your opinion as to its authenticity?

[^0]: ${ }^{1}$ Note that we're playing a little fast and loose with the unknown constant C here. In particular, if we multiply an unknown constant C by -1 , it's still just an unknown constant, and we continue to call it (positive) C.

[^1]: ${ }^{2}$ Compound interest, population growth, radioactive decay, etc...
 ${ }^{3}$ The American Society for the Prevention of Notation Abuse would strongly protest this last equality. I'm just saying that e^{C}, where C is an unknown constant, is itself just an unknown constant, and I don't like having to come up with new letters, so I just continue to represent the unknown constant as C.

