Math 2280 - Lecture 39

Dylan Zwick

Spring 2013

In today's lecture, we'll investigate how Fourier series can be used to solve differential equations of the form:

$$
m x^{\prime \prime}+k x=F(t),
$$

and the properties of these solutions.
Today's lecture corresponds with section 9.4 of the textbook. The assigned problems are:

Section 9.4-1, 2, 3, 19, 20

Applications of Fourier Series

Let's investigate the situation of undamped motion of a mass m on a spring with Hooke's constant k under the influence of a periodic force $F(t)$. As we've learned, the displacement from equilibrium satisfies:

$$
m x^{\prime \prime}(t)+k x(t)=F(t)
$$

The general solution to this system will be an equation of the form:

$$
x(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t+x_{p}(t)
$$

where $\omega_{0}=\sqrt{k / m}$ is the natural frequency of the system and $x_{p}(t)$ is a particular solution to the differential equation. Here we want to use Fourier series to find a periodic particular solutions of the differential equation, which we will denote $x_{s p}(t)$ and call the steady periodic solution.

We will assume for simplicity that $F(t)$ is an odd functions with period $2 L$, so its Fourier series has the form

$$
F(t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi t}{L} .
$$

If $n \pi / L$ is not equal to ω_{0} for any positive integer n, we can determine a steady periodic solution of the form

$$
x_{s p}(t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi t}{L}
$$

by substituting the series into our differential equation and equating the coefficients. Let's see an example of how to do this.

Example - Suppose that $m=2 k g, k=32 N / m$, and that $F(t)$ is the odd periodic force with period $2 s$ given in one period by

$$
F(t)=\left\{\begin{array}{cc}
10 N & 0<t<1 \\
-10 N & 1<t<2
\end{array}\right.
$$

Solution - By essentially the same computation we did three lectures ago, we can calculate that the Fourier series of $F(t)$ is

$$
F(t)=\frac{40}{\pi} \sum_{n=0}^{\infty} \frac{\sin ((2 n+1) \pi t)}{2 n+1}
$$

If we plug this into the right side of our differential equation, and plug in the solution

$$
x_{s p}(t)=\sum_{n=1}^{\infty} b_{n} \sin n \pi t
$$

we get

$$
\sum_{n=1}^{\infty} b_{n}\left(-2 n^{2} \pi^{2}+32\right) \sin n \pi t=\frac{40}{\pi} \sum_{n=0}^{\infty} \frac{\sin ((2 n+1) \pi t)}{2 n+1}
$$

Equating coefficients we get $b_{n}=0$ for n even, and for n odd we get

$$
b_{2 n+1}=\frac{20}{(2 n+1) \pi\left(16-(2 n+1)^{2} \pi^{2}\right)} .
$$

So, our steady periodic solution is

$$
x_{s p}(t)=\frac{20}{\pi} \sum_{n=0}^{\infty} \frac{\sin ((2 n+1) \pi t)}{(2 n+1)\left(16-(2 n+1)^{2} \pi^{2}\right)} .
$$

Now, what happens if $n \pi / L$ happens to equal ω_{0} for some value of n ? In this case, we get resonance, or, more precisely, pure resonance. The reason is that the equation

$$
m x^{\prime \prime}+k x=B_{N} \sin \omega_{0} t
$$

has the resonance solution

$$
x(t)=-\frac{B_{N}}{2 m \omega_{0}} t \cos \omega_{0} t
$$

if $\omega_{0}=\sqrt{k / m}$. The particular solution we get using Fourier series methods is then

$$
x(t)=\frac{-B_{N}}{2 m \omega_{0}} t \cos \omega_{0} t+\sum_{n \neq N} \frac{B_{N}}{m\left(\omega_{0}^{2}-n^{2} \pi^{2} / L^{2}\right)} \sin \frac{n \pi t}{L} .
$$

Example - Suppose that $m=2$ and $k=32$. Determine whether pure resonance will occur if $F(t)$ is the odd periodic function defined in one period to be:
(a) $-F(t)=\left\{\begin{array}{cc}10 & 0<t<\pi \\ -10 & \pi<t<2 \pi\end{array}\right.$
(b) $-F(t)=10 t$, for $-\pi<t<\pi$.

Solution -

(a) - The natural frequency is $\omega_{0}=4$, and the Fourier series of $F(t)$ is

$$
F(t)=\frac{40}{\pi}\left(\sin t+\frac{1}{3} \sin 3 t+\frac{1}{5} \sin 5 t+\cdots\right) .
$$

Pure resonance does not occur because there is no sin $4 t$ term in the Fourier series.
(b) In this case the Fourier series is

$$
F(t)=20 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t .
$$

Pure resonance does occur because of the presence of the term containing the factor $\sin 4 t$.

Even if we don't have resonance, we can have near resonance, where a single term in the solution has a frequency that is close to the natural resonant frequency, and is magnified.

Example - Find a steady periodic solution to

$$
x^{\prime \prime}+10 x=F(t),
$$

where $F(t)$ is the period 4 function with $F(t)=5 t$ for $-2<t<2$ and Fourier series

$$
F(t)=\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi t}{2}
$$

Solution - Following the same procedure we used in the first example we obtain the relation

$$
\sum_{n=1}^{\infty} b_{n}\left(-\frac{n^{2} \pi^{2}}{4}+10\right) \sin \frac{n \pi t}{2}=\frac{20}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi t}{2}
$$

We equate coefficients of like terms and then solve for b_{n} to get the steady periodic solution

$$
\begin{gathered}
x_{s p}(t)=\frac{80}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\left(40-n^{2} \pi^{2}\right)} \sin \frac{n \pi t}{2} \\
\approx(.8452) \sin \frac{\pi t}{2}-(24.4111) \sin \frac{2 \pi t}{2}-(0.1738) \sin \frac{3 \pi t}{2}+\cdots
\end{gathered}
$$

The very large magnitude of the second term is because $\omega_{0}=\sqrt{10}$ is very close to $\pi=\frac{2 \pi}{2}$.

