Math 2280 - Lecture 34

Dylan Zwick

Spring 2013

Last time we learned how to solve linear ODEs of the form:

$$
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=0
$$

around ordinary points using power series. Today, we'll learn how to solve them around a specific type of singular point called a regular singular point.

Today's lecture corresponds with section 8.3 of the textbook. The assigned problems are:

Section $8.3-1,8,15,18,24$

Regular Singular Points

Last time we looked at how to solve linear ODEs of the form:

$$
A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=0
$$

The first thing we do is rewrite the ODE as:

$$
\begin{gathered}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \\
\quad \text { where, of course, } \\
P(x)=\frac{B(x)}{A(x)}, \text { and } Q(x)=\frac{C(x)}{A(x)} .
\end{gathered}
$$

If $P(x)$ and $Q(x)$ are analytic around the point a then we know there are two linearly independent solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

where the raddi of convergence are at least as great as the distance in the complex plane from a to the nearest singular point of either $P(x)$ or $Q(x)$.

Ordinary, Regular, and Irregular Points

We first state without proof that either $P(x)$ and $Q(x)$ are analytic at $x=a$ or approach $\pm \infty$ as $x \rightarrow a$.

Now, of course, we must ask what we do if either $P(x)$ or $Q(x)$ is not analytic at a ? It turns out we have methods for dealing with this as long as they're not analytic in the "right way". We'll get into what that means in just a moment.

We'll restrict ourselves to dealing with the case $a=0$, but we note that by just shifting our coordinates this restriction incurs no loss of generality.

Alright. So, we divide singular points into two types: regular singular points, and irregular singular points. A regular singular point is a singular point where, if we rewrite:

$$
\begin{aligned}
& y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \\
& \text { as } \\
& y^{\prime \prime}+\frac{p(x)}{x} y^{\prime}+\frac{q(x)}{x^{2}} y=0
\end{aligned}
$$

the functions $p(x)$ and $q(x)$ are analytic. This is the situation upon which we'll focus. We will not discuss how to solve ODEs around irregular singular points, as that is a much more difficult and advanced topic.

Example - Determine whether $x=0$ is an ordinary point, a regular singular point, or an irregular singular point of the ODE:

$$
x^{2} y^{\prime \prime}+(6 \sin x) y^{\prime}+6 y=0
$$

Solution - If we divide through by x^{2} we get:

$$
y^{\prime \prime}+\frac{6 \sin x}{x^{2}} y^{\prime}+\frac{6}{x^{2}} y=0
$$

which has $\lim _{x \rightarrow 0} P(x)=\lim _{x \rightarrow 0} Q(x)=\infty$, so $x=0$ is a singular point. If we rewrite this in the format above we have:

$$
p(x)=\frac{6 \sin x}{x}, \text { and } q(x)=6
$$

both of which are analytic at $x=0$. So, $x=0$ is a regular singular point of the ODE.

We again state a fact without proof. If the limits:

$$
\lim _{x \rightarrow 0} p(x) \text { and } \lim _{x \rightarrow 0} q(x)
$$

exist, are finite, and are not 0 then $x=0$ is a regular singular point. If both limits are 0 then $x=0$ may be a regular singular point or an ordinary point. If either limit fails to exists or is $\pm \infty$ then $x=0$ is an irregular singular point. This gives us a useful way for testing if a singular point is regular.

The Method of Frobenius

Now we'll figure out how to actually solve these ODEs around regular singular points. We start by examining the simplest such ODE:

$$
x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y=0
$$

where p_{0}, q_{0} are both constants. This ODE is solved by $y=x^{r}$, where r satisfies the quadratic:

$$
r(r-1)+p_{0} r+q_{0}=0
$$

Using this as our starting point, in general we assume our solution has the form:

$$
y(x)=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n} .
$$

This is called a Frobenius series. We want to figure out what this constant r needs to be. So, assume that we have a solution in this form. In this case we have:

$$
\begin{gathered}
y(x)=x^{r} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n+r}, \\
y^{\prime}(x)=\sum_{n=0}^{\infty} c_{n}(n+r) x^{n+r-1}, \\
y^{\prime \prime}(x)=\sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1) x^{n+r-2} .
\end{gathered}
$$

We substitute these into:

[^0]$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0,
$$
where $p(x)$ and $q(x)$ are analytic around $x=0$, and so have a power series representation of the form:
\[

$$
\begin{aligned}
& p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots \\
& q(x)=q_{0}+q_{1} x+q_{2} x^{2}+\cdots
\end{aligned}
$$
\]

Plugging all this stuff in we get:

$$
\begin{gathered}
{\left[r(r-1) c_{0} x^{r}+(r+1) r c_{1} x^{r+1}+\cdots\right]+\left[p_{0} x+p_{1} x^{2}+\cdots\right] \cdot\left[r c_{0} x^{r-1}+(r+\right.} \\
\left.1) c_{1} x^{r}+\cdots\right]+\left[q_{0}+q_{1} x+\cdots\right] \cdot\left[c_{0} x^{r}+c_{1} x^{r+1}+\cdots\right]=0 .
\end{gathered}
$$

If we examine the x^{r} term we get, assuming (as we of course always can and should) that $c_{0} \neq 0$, we get the relation:

$$
r(r-1)+p_{0} r+q_{0}=0
$$

This is called the indicial equation of the ODE, and it must, according to the identity principle, be satisfies for our solution to work. This is, of course, only a necessary condition, and we certainly haven't proven it's sufficient. That's where the next theorem comes in:

Theorem - Suppose that $x=0$ is a regular singular point of the ODE:

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 .
$$

Let $\rho>0$ denote the minimum of the radii of convergence of the power series:

$$
p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \text { and } q(x)=\sum_{n=0}^{\infty} q_{n} x^{n} .
$$

Let r_{1} and r_{2} be the real roots (we'll always be assuming our roots are real), of the indicial equation with $r_{1} \geq r_{2}$. Then

1. For $x>0$, there exists a solution to our ODE of the form:

$$
y_{1}(x)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n}, a_{0} \neq 0,
$$

corresponding to the larger root r_{1}.
2. If $r_{1}-r_{2}$ is neither zero nor a positive integer, then there exists a second linearly independent solution for $x>0$ of the form:

$$
y_{2}(x)=x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}, b_{0} \neq 0
$$

corresponding to the smaller root r_{2}.

The radii of convergence of y_{1} and y_{2} are at least ρ. We determine the coefficients by plugging our series into:

$$
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0
$$

Example - Use the method of Frobenius to solve the ODE:

$$
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-\left(x^{2}+1\right) y=0
$$

around the regular singular point $x=0$.
Solution - Rewriting this we have:

$$
y^{\prime \prime}+\frac{\frac{3}{2}}{x} y^{\prime}+\frac{-\frac{1}{2}-\frac{1}{2} x^{2}}{x^{2}} y=0
$$

and so $p_{0}=\frac{3}{2}$ and $q_{0}=-\frac{1}{2}$.
This gives us the indicial equation:

$$
r(r-1)+\frac{3}{2} r-\frac{1}{2}=\left(r-\frac{1}{2}\right)(r+1)=0
$$

and so our two roots are $r_{1}=\frac{1}{2}$ and $r_{2}=-1$. So, our theorem guarantees two linearly independent Frobenius type solutions.

Frequently it's easier to work out our solutions without plugging in specific values of r until the end. That's what we'll do here. Now, if we have a solution of the form:

$$
y(x)=\sum_{n=0}^{\infty} x^{n+r},
$$

then if we plug this form into our ODE we get the relation:
$2 \sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r}+3 \sum_{n=0}^{\infty}(n+r) x^{n+r}-\sum_{n=0}^{\infty} c_{n} x^{n+r+2}-\sum_{n=0}^{\infty} c_{n} x^{n+r}=0$.

If we shift the third series over by 2 we get:
$2 \sum_{n=0}^{\infty}(n+r)(n+r-1) c_{n} x^{n+r}+3 \sum_{n=0}^{\infty}(n+r) x^{n+r}-\sum_{n=2}^{\infty} c_{n-2} x^{n+r}-\sum_{n=0}^{\infty} c_{n} x^{n+r}=0$.

From the x^{r} and x^{r+1} coefficients we get the relations:

$$
\begin{gathered}
{[2 r(r-1)+3 r-1] c_{0}=2\left(r^{2}+\frac{1}{2} r-\frac{1}{2}\right) c_{0}=0} \\
{[2(r+1) r+3(r+1)-1] c_{1}=0}
\end{gathered}
$$

If we plug in our values for r we see that the first of these is automatically satisfies for any c_{0}, as the multiplier of c_{0} is just a constant multiplied by the indicial equation. On the other hand, if we plug in our values for r we see that the second equation is only satisfied for $c_{1}=0$.

As for the other coefficients we get the relations:

$$
2(n+r)(n+r-1) c_{n}+3(n+r) c_{n}-c_{n-2}-c_{n}=0,
$$

which simplify to:

$$
c_{n}=\frac{c_{n-2}}{2(n+r)^{2}+(n+r)-1} \text { for } n \geq 2 .
$$

So, given $c_{1}=0$, all the odd coefficients must be 0 . As for the even coefficients, for $r=\frac{1}{2}$ we get:

$$
a_{n}=\frac{a_{n-2}}{2 n^{2}+3 n},
$$

and for $r=-1$ we get:

$$
b_{n}=\frac{b_{n-2}}{2 n^{2}-3 n} .
$$

And, well, that's pretty much as good as we can do. If we write out our first few terms we get:

$$
y_{1}(x)=a_{0} x^{\frac{1}{2}}\left(1+\frac{x^{2}}{14}+\frac{x^{4}}{616}+\frac{x^{6}}{55,440}+\cdots\right)
$$

and

$$
y_{2}(x)=b_{0} x^{-1}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{40}+\frac{x^{6}}{2160}+\cdots\right) .
$$

[^0]: ${ }^{1}$ This is NOT a power series if $r \notin \mathbb{Z}^{+}$.

