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Up to this point we’ve focused almost exclusively on solving linear
differential equations with constant coefficients. But these are, to say the
least, not all the differential equations that are out there. For example, a
differential equation that is encountered very frequently is Bessel’s equation
of order n:

x2y′′ + xy′ + (x2 − n2)y = 0.

A very powerful method for solving linear differential equations with
variable coefficients is through the use of power series. We’ll introduce
this method today.

This lecture corresponds with section 8.1 from the textbook. The as-
signed problems are:

Section 8.1 - 2, 8, 13, 21, 25

Introduction and Review of Power Series

A power series is an infinite series of the form:

∞
∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · ·
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If a = 0 then we call it a power series in x:

∞
∑

n=0

cnx
n = c0 = c1x + c2x

2 + · · ·

We will confine ourselves mainly to power series in x, but every gen-
eral property of power series in x can be converted to a general property
of power series in (x − a).

We say a power series converges on the interval I provided that the
limit

∞
∑

n=0

cnxn = lim
N→∞

N
∑

n=0

cnxn

is defined on I . In this case the sum

f(x) =
∞

∑

n=0

cnx
n

is defined on I , and we call the series a power series representation of the
function f on I .

Some common power series representations are:

ex =

∞
∑

n=0

xn

n!
= 1 + x +

x2

2!
+ · · ·

sin x =

∞
∑

n=0

(−1)nx2n+1

(2n)!
= x −

x3

3!
+

x5

5!
− · · ·

1

1 − x
=

∞
∑

n=0

xn = 1 + x + x2 + · · ·

The first two series converge for all x, while the third, called the geo-
metric series, only converges for |x| < 1.
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The Power Series Method

The power series method for solving a differential equation consists of sub-
stituting the power series

y =
∞

∑

n=0

cnx
n

into the differential equation, and then attempting to determine what
the coefficients c0, c1, c2, . . . must be in order for the power series to satisfy
the differential equation.

In solving these differential equations, there are two very important
theorems:

Theorem - Termwise Differentiation and Integration of Power Series

If the power series representation

f(x) =
∞

∑

n=0

cnx
n = c0 + c1x + c2x

2 + · · ·

of the function f converges on the open interval I , then f is differen-
tiable on I , and

f ′(x) =

∞
∑

n=1

ncnxn−1 = c1 + 2c2x + 3c3x
2 + · · ·

at each point of I .

And the other theorem is:
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Theorem - Identity Principle

If

∞
∑

n=0

anxn =
∞

∑

n=0

bnx
n

for every point x in some open interval I , then an = bn for all n ≥ 0.

In particular, if
∑

anx
n = 0 for all x in some open interval, it follows

from the identity principle that an = 0 for all n ≥ 0.

Now, if we have a power series solution to a differential equation, an
important question is the interval upon which the series converges. A
useful test for determining this interval is the following:

Theorem - Radius of Convergence

Given the power series
∑

cnxn, suppose that the limit

ρ = lim
n→∞

∣

∣

∣

∣

cn

cn+1

∣

∣

∣

∣

exists (ρ is finite) or is infinite. Then

(a) If ρ = 0, then the series diverges for all x 6= 0.

(b) If 0 < ρ < ∞, then
∑

cnxn converges if |x| < ρ and diverges if |x| > ρ.

(c) If ρ = ∞, then the series converges for all x.

The number ρ is called the radius of convergence of the power series
∑

cnx
n.
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Let’s see how the power series method works with a few examples.

Example - Solve the differential equation y′ = y.

Solution - If we make the substitution

y(x) =

∞
∑

n=0

cnxn

we get the relation

∞
∑

n=1

ncnx
n−1 =

∞
∑

n=0

cnx
n.

We can rewrite this as:

∞
∑

n=1

ncnx
n−1 −

∞
∑

n=0

cnx
n = 0.

If we shift the sum on the left by 1 we can combine the two sums to get:

∞
∑

n=0

((n + 1)cn+1 − cn)xn = 0.

The identity principle tells us this must mean

(n + 1)cn+1 − cn = 0.

So, we have the recurrence relation

cn+1 =
cn

n + 1
.

The first few terms are:
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c0 = c0,

c1 =
c0

1
,

c2 =
c1

2
=

c0

1 × 2
,

c3 =
c2

3
=

c0

1 × 2 × 3
=

c0

3!
,

and, in general, cn =
c0

n!
.

So,

y(x) = c0

∞
∑

n=0

xn

n!
= c0e

x.

But, we already knew that, didn’t we!

Example - Solve the equation x2y′ = y − x − 1.

Again, we substitute the solution

y(x) =
∞

∑

n=0

cnxn

into the differential equation. Doing this gives us the relation

∞
∑

n=1

ncnxn+1 = (c0 − 1) + (c1 − 1)x +

∞
∑

n=2

cnx
n.

The coefficients in front of xk for all k must be equal, and so we get
c0 = c1 = 1, and the series equality

∞
∑

n=1

ncnx
n+1 −

∞
∑

n=2

cnx
n = 0.
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If we shift the sum on the left by 1 and the sum on the right by 2 we get

∞
∑

n=0

((n + 1)cn+1 − cn+2)x
n+2 = 0.

So, this gives us cn+2 = (n + 1)cn+1. The first few terms are:

c2 = 1 · c1 = c1,

c3 = 2 · c2 = (2 × 1)c1,

c4 = 3 · c3 = (3 × 2 × 1)c1,

and, in general, cn = (n − 1)!c1.

So, as c1 = 1, our solution is

y(x) = 1 + x +
∞

∑

n=2

(n − 1)!xn.

Hmmm... something fishy here. Let’s look at the radius of convergence
for this series.

lim
n→∞

∣

∣

∣

∣

(n − 1)!

n!

∣

∣

∣

∣

= lim
n→∞

1

n
= 0.

So, the series diverges(!) for all values of x outside x = 0. What does
this mean? It means our differential equation does not have a convergent
power series solution of the assumed form.1 Lesson - always check for
convergence.

1Not too surprising, as the differential equation y
′ −

y

x2
+

x + 1

x2
= 0 is not defined at

x = 0.
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Example - Solve the equation y′′ + y = 0.

Solution - Yet again, we make the substitution

y(x) =
∞

∑

n=0

cnx
n.

Making this substitution we get the equation

∞
∑

n=2

n(n − 1)cnxn−2 +

∞
∑

n=0

cnx
n = 0.

Shifting the sum on the left by 2 we get the relation

∞
∑

n=0

((n + 2)(n + 1)cn+2 + cn)xn = 0.

From the identity principle this gives us

cn+2 = −
cn

(n + 1)(n + 2)
.

The terms will break up into odd and even parts2, and the relations
we’ll get are:

c2k =
(−1)kc0

(2k)!
,

and

c2k+1 =
(−1)kc1

(2k + 1)!
.

So, our solution will be:

2Just as we’ve done before, just take the first few terms and look for patterns...
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y(x) = c0

∞
∑

n=0

(−1)nx2n

(2n)!
+ c1

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
.

We recognize the first summation as the cosine function, and the sec-
ond summation as the sine function. In fact, this is how we could define
the cosine and sine functions, in terms of the power series that satisfies a
given differential equation with some set initial conditions. This is, in fact,
how many famous functions in applied mathematics come about.
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