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If we think back to calculus II we’ll remember that one of the most
important things we learned about in the second half of the course were
Taylor series. A Taylor series is a way of expressing a function as an “in-
finite polynomial”. The Taylor series (or in the cases below the Maclaurin
series, which is just the Taylor series expanded around the point x = 0) for
some common functions are:

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

We’re going to use this conception of an exponential function to define
what it means to take a “matrix exponential”, which is a matrix-valued
function of the form:

eA

where A is a constant square matrix. Now, it may be that you’ve never
seen this before, and it’s not immediately clear what this means. How do
you take something to a matrix power? Well, the way that we define this
exponential is in terms of an infinite series:
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eA = I + A +
A2

2!
+

A3

3!
+ · · ·

Now, we’ll say that the rigor police are off the beat here and won’t go
through a proof that this series always converges, but it’s true that this
series always converges to some constant matrix, where we view conver-
gence of a series of matrices in terms of convergence of their individual
entries.

We’re going to see that matrix exponentials have quite a bit to do with
finding solutions to first-order linear homogeneous systems with constant
coefficients.

This lecture corresponds with section 5.5 of the textbook. The assigned
problems for this section are:

Section 5.5 - 1, 7, 9, 18, 24

Fundamental Matrices for Systems of ODEs

To review, a solution to a system of ODEs satisfies the relation:

x′ = Ax.

If we have n linearly independent solutions x1, . . . , xn then any solution
to our system can be written in the form:

x = c1x1 + c2x2 + · · ·+ cnxn.

From these linearly independent solutions we can construct a matrix
Φ(t):

Φ(t) =
(

x1 x2 · · · xn

)

which is called a fundamental matrix for the system defined by the con-
stant matrix A. Now, our statement that we can write any solution x as a
linear combination of our linearly independent solutions can be written in
matrix form as:
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x = Φ(t)c

where c is a constant vector given by:

c =







c1

...
cn






.

This fundamental matrix Φ(t) is not unique, and if Ψ(t) is another fun-
damental matrix then we have:

Ψ(t) =
(

x̃1 x̃2 · · · x̃n

)

,

where the x̃i are linearly independent solutions to our system of ODEs.
Now, each of these solutions can in turn be represented as a linear combi-
nation of our original xi:

x̃1 = c11x1 + c12x2 + · · · + c1nxn

x̃2 = c21x1 + c22x2 + · · · + c2nxn

...
x̃n = cn1x1 + cn2x2 + · · ·+ cnnxn

or, in matrix terminology:

Ψ(t) = Φ(t)C

where

C =











c11 c21 · · · cn1

c12 c22 · · · cn2

...
...

. . .
...

c1n c2n · · · cnn











.

If we have an initial condition:
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x(0) = x0

then we get for our solution:

x0 = Ψ(0)c

where c is a constant vector given by:

c = Ψ(0)−1x0

and we note that Ψ(0)−1 makes sense as Ψ(t) is nonsingular for all t by
definition.

Combining these results we get:

x(t) = Ψ(t)Ψ(0)−1x0.

Example - Find a fundamental matrix for the system below, and then
find a solution satisfying the given initial conditions.

x′ =

(

2 −1
−4 2

)

x

with initial condition

x(0) =

(

2
−1

)

Solution - To find a fundamental matrix, we need to find two linearly
independent solutions to the system. We can get these using the eigen-
value methods from section 5.2. The characteristic equation for our matrix
is:

∣

∣

∣

∣

2 − λ −1
−4 2 − λ

∣

∣

∣

∣

= (2 − λ)2 − 4 = λ(λ − 4).
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So, we have two eigenvalues λ = {0, 4}. For these two eigenvalues we
get the eigenvectors below.

For λ = 0 we have:

(

2 −1
−4 2

) (

a

b

)

=

(

0
0

)

.

This gives us an eigenvector:

v1 =

(

1
2

)

.

For λ = 4 we have:

(

−2 −1
−4 −2

) (

a

b

)

=

(

0
0

)

,

which gives us the eigenvector:

v2 =

(

1
−2

)

.

From this we get the fundamental matrix:

Φ(t) =

(

1 e4t

2 −2e4t

)

.

The initial value of this fundamental matrix is:

Φ(0) =

(

1 1
2 −2

)

,

which has inverse:
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Φ(0)−1 =
1

−4

(

−2 −1
−2 1

)

=

(

1

2

1

4
1

2
−1

4

)

.

Using this we get the initial constant vector:

c =

(

1

2

1

4
1

2
−1

4

) (

2
−1

)

=

(

3

4
5

4

)

.

Using this we get the final solution:

x(t) = Φ(t)Φ(0)−1x0 =
(

1 e4t

2 −2e4t

) (

3

4
5

4

)

=

(

3

4
+ 5

4
e4t

3

2
− 5

2
e4t

)

=

(

3

4
3

2

)

+

(

5

4

−5

2

)

e4t.

Now, this may seem like a more difficult way of figuring out the same
solutions we’d figured out using other methods and, well, that’s because
it is. However, the major advantage to this method is that it makes it
very easy to switch around our initial conditions. Once we’ve found Φ(t)
and Φ(0)−1, it becomes very easy to find the solution for any given initial
conditions x0 just using the relation x(t) = Φ(t)Φ(0)−1x0.

Matrix Exponentials and ODEs

Right about now you might be asking why we discussed matrix exponen-
tials at the beginning of this lecture. We haven’t used them yet. Well, now
is when we’re going to talk about them, and we’ll see they are intimately
connected to fundamental matrices.

First, let’s go over some important properties of matrix exponentials.

If A is a diagonal matrix:

A =





a 0 0
0 b 0
0 0 c




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then if we exponentiate this matrix we get:

eA =





ea 0 0
0 eb 0
0 0 ec



.

Of course the same idea works, mutatis mutandis, for a diagonal ma-
trix of any size.

Also, if two matrices commute, so AB = BA, then:

eA+B = eAeB.

Note this this is not necessarily true if A and B do not commute.

Finally, if we have the matrix exponential:

eAt = I + At +
A2

2!
t2 +

A3

3!
t3 + · · ·

then we can differentiate these term by term1 and we get:

deAt

dt
= A + A2t +

A3

2!
t2 + · · · = AeAt.

Well, this is very interesting. What this is saying is that the matrix eAt

satisfies the matrix differential equation:

X′ = AX

where X is a square matrix the same size as A, and each column of x
satisfies x′

i
= Axi. Now, as eAt is nonsingular, each of its columns must be

linearly independent, and so eAt is a fundamental matrix for A!

If we note finally that eA0 = I = I−1 then we get the relation:

1Again, just trust me, the rigor politce are off duty here...
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x(t) = eAtx0.

where x(t) is a solution to the system of ODEs:

x′(t) = Ax(t)

with initial condition:

x(0) = x0.

Note this is very similar to the solution of the differential equation:

x′ = x.

Example - Solve the system of differential equations:

x′ =





2 3 4
0 2 6
0 0 2



 x

with initial conditions:

x(0) =





19
29
39



.

Solution - To solve this we note that:





2 3 4
0 2 6
0 0 2



 =





2 0 0
0 2 0
0 0 2



 +





0 3 4
0 0 6
0 0 0




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where we call the first matrix in the sum on the right B and the second
matrix C.

Now, we note that:

C2 =





0 3 4
0 0 6
0 0 0









0 3 4
0 0 6
0 0 0



 =





0 0 18
0 0 0
0 0 0





and

C3 =





0 0 0
0 0 0
0 0 0



.

This is an example of a matrix that is nilpotent. A matrix M is nilpotent
if Mk = 0 for some positive integer k. Calculating the matrix exponentials
of nilpotent matrices is very easy. It’s kind of like calculating Taylor series
for polynomials.

Now,

eCt =





1 0 0
0 1 0
0 0 1



 +





0 3 4
0 0 6
0 0 0



 t +
1

2





0 0 18
0 0 0
0 0 0



 t2.

And so

eCt =





1 3t 4t + 9t2

0 1 6t
0 0 1



.

while for our matrix B the matrix exponential is just:

eBt =





e2t 0 0
0 e2t 0
0 0 e2t



.
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So, given that BC = CB (which is very important for this example) we
get:

eAt = eBteCt =





e2t 3te2t (4t + 9t2)e2t

0 e2t 6te2t

0 0 e2t



.

Therefore, the solution to our differential equation is:

x(t) = eAtx0 =





e2t 3te2t (4t + 9t2)e2t

0 e2t 6te2t

0 0 e2t









19
29
39





=





19 + 243t + 351t2

29 + 234t
39



 e2t.
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