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So far we’ve seen systems of first-order differential equations, and we’ve
learned how to solve those systems by using the method of elimination.
Using this method, we reduced the system to a single higher-order differ-
ential equation that we then know how to solve using the methods from
chapter 3. We’ve also seen how to rewrite a higher-order differential equa-
tion as a system of first-order differential equations. Wouldn’t it be nice
if there were a way to solve a system of first-order differential equations
without converting the system into a higher-order differential equation?

Well, for once, the universe is nice. There is a method for solving sys-
tems of first-order differential equations, and it involves finding those
eigenvalues you got to know and love in math 2270. Today we’ll learn
about this method.

Today’s lecture corresponds with section 5.2 from the textbook. The
assigned problems from this section are:

Section 5.2 - 1, 9, 15, 21, 39

The Eigenvalue Method for Homogeneous Sys-

tems

Suppose we have a system of first-order ODEs with constant coefficients:

x′

1 = a11x1 + a12x2 + · · ·+ a1nxn

x′

2 = a21x1 + a22x2 + · · ·+ a2nxn
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...
x′

n = an1x1 + an2x2 + · · ·+ annxn

We know that any solution (general theory) can be written as the linear
combination:

x(t) = c1x1 + · · · + cnxn

where the xi are linearly independent solutions of the system of ODEs.
So, what we want to do is figure out how to find these linearly indepen-
dent solutions.

The Exponential “Guess”

By analogy with the constant coefficient case for homogeneous ODEs, we
can “guess” a solution of the form:

x(t) =







v1
...

vn






eλt = veλt

where the vi and λ are appropriate scalar constants.

Now, if we write our system as:

x′ = Ax

then if x = veλt we get:

λveλt = Aveλt

⇒ λv = Av

which is the “eigenvalue equation” from linear algebra.
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The Eigenvalue Equation

We begin with a theorem from linear algebra. Namely, that Av = λv for
some v 6= 0 if and only if det(A − λI) = 0. This theorem determines the
possible values of λ.

In general

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ
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∣

= 0

gives us a “characteristic”1 nth-order (in λ) polynomial whose roots are
the acceptable values of λ.

Well, if we get n distinct eigenvalues, as these roots are called, then
we get n linearly independent solutions, and we’re done. Now, as you
might imagine, these solutions may be complex conjugates, a situation
we’ll discuss today. We’ll delay what we do if any of the eigenvalues are
repeated until next time.

All Real Roots

If all the roots are real and distinct, then the problem is as easy as it can be.
How this is handled is best seen in the context of an example.

Example - Find the general solution of:

x′ =

(

2 3
2 1

)

x

1The German term “eigen” roughly translates, in this context, as “characteristic”.
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Continued...
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Complex Eigenvalues

Any complex eigenvalue will also have its conjugate as an eigenvalue:

(A − λI)v = 0

⇒ (A − λI)v = 0

So, v is a corresponding eigenvector to the eigenvalue λ. Now, if λ is
complex then we have:

x(t) = veλt = ve(p+qi)t = (a + bi)ept(cos (qt) + i sin (qt))

which gives us,

x(t) = ept(a cos (qt) − b sin (qt)) + iept(b cos (qt) + a sin (qt))

Now, as 0 = 0 + i0, both the real term and complex term here must be
a solution to the system of ODEs, and these are the same pair of solutions
we’ll get from the eigenvalue’s conjugate. So, our two linearly indepen-
dent solutions, arising from the eigenvalue and its conjugate, are the real
and imaginary parts above.

Example - Find the solution to the given system of ODEs:

x′

1 = x1 − 2x2

x′

2 = 2x1 + x2

x1(0) = 0, x2(0) = 4
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