
Math 2280 - Lecture 21

Dylan Zwick

Spring 2013

First note that we’re a bit behind schedule, and as I’ve chosen not to fo-
cus on numerical methods in this class we’ll be skipping section 4.3 from
the textbook. So, today we’ll begin chapter 5 on linear systems of differen-
tial equations.

Today’s lecture will be mostly a review of linear algebra. Please note
that this is intended to be a review, and so the first 80% of the lecture should
be familiar to you. If it’s not, please try to review the material ASAP.

The assigned problems for the corresponding section from the textbook
are:

Section 5.1 - 1, 7, 15, 21, 27

A Review of Linear Algebra

The fundamental object we study in linear algebra is the matrix, which is
a rectangular array of numbers:











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn











.

This is an m×n matrix, which means that it has m rows and n columns.
We note that the number of rows and number of columns do not have to
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be the same, although frequently for the matrices we deal with they will
be.

Basic Operations

Addition of matrices is termwise. We can only add two matrices if they are
the same size. Multiplying a matrix by a constant multiplies every element
in the matrix by that constant.

Example - Calculate the following sum and product:

(

4 1
3 7

)

+

(

2 9
5 6

)

=

(

6 10
8 13

)

4

(

2 9
5 6

)

=

(

8 36
20 24

)

Matrix addition and scalar multiplication of matrices satisfy the fol-
lowing basic properties:

1. A + 0 = A (additive identity)

2. A + B = B + A (commutativity of addition)

3. A + (B + C) = (A + B) + C (associativity of addition)

4. c(A + B) = cA + cB (distributivity over matrix addition)

5. (c + d)A = cA + dA (distributivity over scalar addition)

where here bold faced capital1 letters represent matrices, lower case
standard letters represent scalars, and 0 represents the zero matrix of the
appropriate size2.

1Did you know that a word for a capital letter is a “majascule”, and a word for a
lower-case letter is a “miniscule”?

2The zero matrix is a matrix with all zero entries.
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Dot Products and Matrix Multiplication

The 1 × n matrices are frequently called vectors or column vectors, while
the m × 1 matrices are frequently called row vectors. We can take the dot
product of two vectors (which can be formulated as the product of a row
vector with a column vector) by summing the products of the entries on
the two vectors

Example - Suppose a =





3
4
7



 and b =





2
9
6



, calculate a · b.

a · b = 3 × 2 + 4 × 9 + 7 × 6 = 84.

Matrices can be multiplied as well as summed. The basic formula for
matrix multiplication is:

ABij =

k
∑

r=1

aikbkj

where the matrix AB is the matrix A right multiplied by the matrix B.
We note that for this to work out the number of columns in A must equal
the number of rows in B. We can view the entry ABij as being the dot
product of the ith row of matrix A with the jth column of matrix B.

Example - For the matrices

A =

(

2 3
4 1

)

and B =

(

3 4
1 5

)

,

calculate AB and BA.

AB =

(

2 3
4 1

) (

3 4
1 5

)

=

(

9 23
13 21

)

,

BA =

(

3 4
1 5

) (

2 3
4 1

)

=

(

22 13
22 8

)

.
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Note that, as the examples above illustrate, matrix multiplication is in
general not commutative. In fact, sometimes when AB makes sense BA
does not! And it’s not always the case that AB = BA even when this
makes sense (i.e. they’re both square).

Inverses

For square matrices we can talk about inverses. For a square matrix A, its
inverse (if it exists) is the unique matrix A−1 such that:

AA−1 = I

where the matrix I is the identity matrix that is a square matrix with the
entry 1 down the diagonal and the entry 0 everywhere else. The identity
matrix is called this because if you multiply it with any other appropriate
(same size) matrix you just get back that matrix. We again stress that these
concepts only make sense for square matrices.

Determinants

For a 2 × 2 matrix the determinant is defined as:

det(A) = det

(

a11 a12

a21 a22

)

=

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21

Higher-order determinants can be calculated by row or column expan-
sion.

Example - Calculate

∣

∣

∣

∣

∣

∣

3 2 1
5 6 2
0 1 4

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

3 2 1
5 6 2
0 1 4

∣

∣

∣

∣

∣

∣

= 3

∣

∣

∣

∣

6 2
1 4

∣

∣

∣

∣

− 2

∣

∣

∣

∣

5 2
0 4

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

5 6
0 1

∣

∣

∣

∣

= 31

We note that we’d get the same value if we chose to expand along any
row or column.

Now, a big (in some sense the big) theorem from linear algebra states
that a square matrix is invertible if and only if it has a non-zero determi-
nant. Note that the concept of determinant as such doesn’t make sense for
non-square matrices.

Matrix-Valued Functions

The entries of a vector, or matrix for that matter, don’t have to be constants,
and they can even be functions. A vector-valued function is a vector all of
whose components are functions:

x(t) =











x1(t)
x2(t)

...
xn(t)











where the xi(t) are standard (scalar-valued) functions.

In a similar way we can define matrix-valued functions:

A(t) =











a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

. . .
...

am1(t) am2(t) · · · amn(t)











We can make sense of the derivative of vector or matrix valued func-
tions just by defining it as the derivative of each entry termwise. If we
define differentiation of matrix-valued functions this way we recover a
form of the product rule:

5



d(AB)

dt
=

dA

dt
B + A

dB

dt
.

We note that these terms are all matrices, and matrix multiplication is
in general not commutative, so don’t switch these terms around even if
they’re square and you can!

Example - Calculate A′(t) for the matrix:

A(t) =

(

et t2 − 2t
cos (4t) 3t + 1

)

A′(t) =

(

et 2t − 2
−4 sin (4t) 3t ln 3

)

First-Order Linear Systems

As mentioned in section 4.2, if we have a first-order linear system of dif-
ferential equations:

x′

1
= p11(t)x1 + p12(t)x2 + · · ·+ p1n(t)xn + f1(t)

x′

2
= p21(t)x1 + p12(t)x2 + · · ·+ p2n(t)xn + f2(t)

· · ·

x′

n = pn1(t)x1 + pn2(t)x2 + · · · + pnn(t)xn + fn(t)

we can express this in a much simpler form as a matrix equation:

dx

dt
= Px + f,

where xi1 = xi(t), Pij = pij(t), and fi1 = fi(t).

A solution to this system of differential equations is a vector valued
function x that satisfies the above differential equation. Now, we call such
an equation homogeneous if, you guessed it, f = 0.
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Superposition

Suppose we have a homogeneous differential equation in the form above
and we have solutions x1, x2, . . . , xn. Then any other vector-valued func-
tion of the form:

x = c1x1 + c2x2 + · · ·+ cnxn

is also a solution. This follows immediately from the linearity proper-
ties of, well, linear algebra.

Now, it turns out (not too surprisingly) that any solution of a homoge-
neous differential equation in the form mentioned above can be written as
a linear combination of n linearly independent solutions x1, . . . , xn.

We can determine if n solution vectors are linearly independent by
checking their (surprise!) Wronskian:

W (x1, . . . , xn) = det([x1 · · ·xn]).

Example - First verify that the given vectors are solutions of the given
system. Then use the Wronskian to show that they are linearly indepen-
dent. Finally, write the general solution of the system.

x′ =

(

4 2
−3 −1

)

x

x1 =

(

2et

−3et

)

, x2 =

(

e2t

−e2t

)

Checking the first solutions we have

x′

1
=

(

2et

−3et

)

,

while
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(

4 2
−3 −1

) (

2et

−3et

)

=

(

2et

−3et

)

.

So, x1 is a solution. Checking the other solution we get

x′

2
=

(

2e2t

−2e2t

)

,

while

(

4 2
−3 −1

) (

e2t

−e2t

)

=

(

2e2t

−2e2t

)

.

So, x2 is also a solution.

The Wronskian of x1 and x2 is:

W (x1, x2) =

∣

∣

∣

∣

2et e2t

−3et −e2t

∣

∣

∣

∣

= −2e3t + 3e3t = e3t 6= 0.

So, the solutions are linearly independent.

The general solution of the system will be:

c1x1 + c2x2 = c1

(

2et

−3et

)

+ c2

(

e2t

−e2t

)

,

where c1 and c2 are unknown constants that would be determined by
initial conditions.
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