# Math 2280 - Lecture 17 

## Dylan Zwick

Spring 2013

In today's lecture we'll talk about another very common physical system that comes up all the time in engineering - a closed circuit with a resistor, a capacitor, and an inductor. We'll learn that, even though physically this system is very different than a mass on a spring, the differential equation that describes them is, essentially, the same. Well, the same equations have the same solutions, and we'll see that the solutions we determined for the mass-spring system have their exact analogs for circuits.

Today's lecture corresponds with section 3.7 of the textbook. The assigned problems are:

Section $3.7-1,5,10,17,19$

## Electrical Circuits

For an electrical circuit of the type pictures below:


Kirchoff's second law tells us that the sum of the voltage drops across each component must equal 0 :

$$
L \frac{d I}{d t}+R I+\frac{1}{C} Q=E(t)
$$

This is a second order linear ODE with constant coefficients! So everybody chill out, we've got this. For example, if

$$
E(t)=E_{0} \sin (\omega t)
$$

if we differentiate both sides of the equation we get:

$$
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=\omega E_{0} \cos \omega t
$$

The homogeneous solution to this will be:

$$
y_{h}=e^{-\frac{R t}{2 L}}\left(c_{1} e^{\frac{\sqrt{R^{2}-4 L / C}}{2 L}} t+c_{2} e^{-\frac{\sqrt{R^{2}-4 L / C}}{2 L}} t\right) .
$$

This gives us a solution for $I_{t r}$, the transient current that will die out exponentially.

The particular solution will give us another term called the steady periodic current. It won't die out exponentially. If we run through the math, which is exactly the same as in the mechanical system, we get:

$$
\begin{gathered}
I_{s p}(t)=\frac{E_{0} \cos (\omega t-\alpha)}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}} \\
\text { where } \\
\alpha=\arctan \left(\frac{\omega R C}{1-L C \omega^{2}}\right) .
\end{gathered}
$$

The quantity in the denominator of our steady periodic current is denoted by the variable $Z$ and is called the impedence of the circuit. The term $\omega L-1 /(\omega C)$ is called the reactance.

If we use the letter $Z$ to denote the impedence, so

$$
Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}},
$$

then the amplitude of our steady periodic current is

$$
I_{0}=\frac{E_{0}}{Z} .
$$

If $R \neq 0$ then $Z \neq 0$, and we see that this amplitude is maximized when $Z$ is minimized. The frequency $\omega$ that minimizes the impedence will be the frequency that makes the reactance 0 . Specifically,

$$
\omega_{m}^{2}=\frac{1}{L C} .
$$

This frequency is called the resonant frequency of the circuit.
Example - In the circuit below, suppose that $L=2, R=40, E(t)=$ $100 e^{-10 t}$, and $I(0)=0$. Find the maximum current for $t \geq 0$.


More room for the example problem.

$$
\begin{aligned}
& I^{\prime}(2)+I(40)=100 e^{-10 t} \\
& I^{\prime}+20 I=50 e^{-10 t} \text { Using section } 1.5 \\
& \Rightarrow \frac{d}{d t}\left(I e^{20 t}\right)=50 e^{10 t} \\
& \Rightarrow I e^{20 t}=\int 50 e^{10 t} d t=5 e^{10 t}+C \\
& \Rightarrow I(t)=C e^{-20 t}+5 e^{-10 t} \\
& I(0)=C t 5=0 \Rightarrow C=-5 \\
& I(t)=5 e^{-10 t}-5 e^{-20 t} \\
& I(t)=100 e^{-20 t}-50 e^{-10 t}=0 \Rightarrow 2=e^{10 t} \\
& \Rightarrow t= \frac{\ln 2}{10} \\
& I_{\max }(t)=I\left(\frac{\ln 2}{10}\right)=5 e^{-\ln 2}-5 e^{-2 \ln 2} \\
&= \frac{5}{2}-\frac{5}{4}=\frac{5}{4} \operatorname{amps}
\end{aligned}
$$

Example - The parameters of an RLC circuit with input voltage $E(t)$ are:

$$
R=30 \Omega, L=10 H, C=0.02 F ; E(t)=50 \sin (2 t) V .
$$

Substitute

$$
I_{s p}(t)=A \cos \omega t+B \sin \omega t
$$

using the appropriate value of $\omega$ to find the steady periodic current in the form $I_{s p}(t)=I_{0} \sin (\omega t-\delta)$.

$$
\begin{aligned}
& \omega=2 \\
& I_{0}=\frac{E_{0}}{\sqrt{R^{2}+\left(\omega\left(-\frac{1}{\omega C}\right)^{2}\right.}}=\frac{90}{\sqrt{900+(20-25)^{2}}} \\
& =\frac{50}{\sqrt{925}}=\frac{10}{\sqrt{37}} \\
& \begin{aligned}
& \alpha=\arctan \left(\frac{2(30)(-02)}{1-(10)(, 02)\left(2^{2}\right)}\right)=\arctan (6) \\
& I_{s p}=\frac{10}{\sqrt{37}} \cos (2 t-\arctan (6)) \\
&=\frac{10}{\sqrt{37}} \sin \left(2 t-\arctan (6)+\frac{\pi}{2}\right) \\
&=\frac{10}{\sqrt{37}} \sin \left(2 t-\left(\arctan (6)-\frac{\pi}{2}\right)\right) \\
& 0 r \sin \left(2 t-\left(\frac{10}{2}+\arctan (6)\right)\right.
\end{aligned}
\end{aligned}
$$

